Search result: Catalogue data in Autumn Semester 2017

Mathematics Master Information
Electives
For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields.
Electives: Applied Mathematics and Further Application-Oriented Fields
¬
Selection: Probability Theory, Statistics
NumberTitleTypeECTSHoursLecturers
401-4607-67LSchramm-Loewner EvolutionsW4 credits2VW. Werner
AbstractThis course will be an introduction to Schramm-Loewner Evolutions which are natural random planar curve that arise in a number of contexts in probability theory and statistical theory in two dimensions.
ObjectiveThe goal of the course is to provide an overview of the definition and the main properties of Schramm-Loewner Evolutions (SLE).
ContentMost of the following items will be covered in the lectures:
- Introduction to SLE
- Definition of SLE
- Phases of SLE, hitting probabilities
- How does one prove that an SLE is actually a curve?
- Restriction, locality
- Relation to loop-soups and the Gaussian Free Field
- Some SLEs as scaling limit of lattice models
401-4597-67LProbability on Transitive GraphsW4 credits2VV. Tassion
AbstractIn this course, we will present modern topics at the interface between probability and geometric group theory. We will define two random processes on Cayley graphs: the simple random walk and percolation, and discuss their respective behaviors depending on the geometric properties of the underlying group.
ObjectivePresent in an original framework important tools in the study of
- random walks: spectral gap, harmonic functions, entropy,...
- percolation: uniqueness of the infinite cluster, mass-transport principle,...
ContentIn this course, we will present modern topics at the interface between probability and geometric group theory. To every group with a finite generating set, one can associate a graph, called Cayley graph. (For example, the d-dimensional grid is a Cayley graph associated to the group Z^d.) Then, we will define two random processes on Cayley graphs: the simple random walk and percolation, and discuss their respective behaviors depending on the geometric properties of the underlying group. The focus will be on the random processes and their properties, and we will use very few notions of geometric group theory.
LiteratureProbability on trees and network (R. Lyons, Y. Peres)
Prerequisites / Notice- Probability Theory
- No prerequisite on group theory, all the background will be introduced in class.
401-4619-67LAdvanced Topics in Computational StatisticsW4 credits2VN. Meinshausen
AbstractThis lecture covers selected advanced topics in computational statistics. This year the focus will be on graphical modelling.
ObjectiveStudents learn the theoretical foundations of the selected methods, as well as practical skills to apply these methods and to interpret their outcomes.
ContentThe main focus will be on graphical models in various forms:
Markov properties of undirected graphs; Belief propagation; Hidden Markov Models; Structure estimation and parameter estimation; inference for high-dimensional data; causal graphical models
Prerequisites / NoticeWe assume a solid background in mathematics, an introductory lecture in probability and statistics, and at least one more advanced course in statistics.
401-4637-67LOn Hypothesis TestingW4 credits2VF. Balabdaoui
AbstractThis course is a review of the main results in decision theory.
ObjectiveThe goal of this course is to present a review for the most fundamental results in statistical testing. This entails reviewing the Neyman-Pearson Lemma for simple hypotheses and the Karlin-Rubin Theorem for monotone likelihood ratio parametric families. The students will also encounter the important concept of p-values and their use in some multiple testing situations. Further methods for constructing tests will be also presented including likelihood ratio and chi-square tests. Some non-parametric tests will be reviewed such as the Kolmogorov goodness-of-fit test and the two sample Wilcoxon rank test. The most important theoretical results will reproved and also illustrated via different examples. Four sessions of exercises will be scheduled (the students will be handed in an exercise sheet a week before discussing solutions in class).
Literature- Statistical Inference (Casella & Berger)
- Testing Statistical Hypotheses (Lehmann and Romano)
401-3628-14LBayesian StatisticsW4 credits2VF. Sigrist
AbstractIntroduction to the Bayesian approach to statistics: Decision theory, prior distributions, hierarchical Bayes models, Bayesian tests and model selection, empirical Bayes, computational methods, Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods.
ObjectiveStudents understand the conceptual ideas behind Bayesian statistics and are familiar with common techniques used in Bayesian data analysis.
ContentTopics that we will discuss are:

Difference between the frequentist and Bayesian approach (decision theory, principles), priors (conjugate priors, Jeffreys priors), tests and model selection (Bayes factors, hyper-g priors in regression),hierarchical models and empirical Bayes methods, computational methods (Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods)
Lecture notesA script will be available in English.
LiteratureChristian Robert, The Bayesian Choice, 2nd edition, Springer 2007.

A. Gelman et al., Bayesian Data Analysis, 3rd edition, Chapman & Hall (2013).

Additional references will be given in the course.
Prerequisites / NoticeFamiliarity with basic concepts of frequentist statistics and with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.
401-0625-01LApplied Analysis of Variance and Experimental Design Information W5 credits2V + 1UL. Meier
AbstractPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
ObjectiveParticipants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.
ContentPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
LiteratureG. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000.
Prerequisites / NoticeThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.
401-0649-00LApplied Statistical RegressionW5 credits2V + 1UM. Dettling
AbstractThis course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.
ObjectiveThe students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.
ContentThe course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.
Lecture notesA script will be available.
LiteratureFaraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis
Prerequisites / NoticeThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Regression" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
401-3627-00LHigh-Dimensional Statistics
Does not take place this semester.
W4 credits2VP. L. Bühlmann
Abstract"High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.
ObjectiveKnowledge of methods and basic theory for high-dimensional statistical inference
ContentLasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling
LiteraturePeter Bühlmann and Sara van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Verlag.
ISBN 978-3-642-20191-2.
Prerequisites / NoticeKnowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).
401-4623-00LTime Series Analysis
Does not take place this semester.
W6 credits3Gnot available
AbstractStatistical analysis and modeling of observations in temporal order, which exhibit dependence. Stationarity, trend estimation, seasonal decomposition, autocorrelations,
spectral and wavelet analysis, ARIMA-, GARCH- and state space models. Implementations in the software R.
ObjectiveUnderstanding of the basic models and techniques used in time series analysis and their implementation in the statistical software R.
ContentThis course deals with modeling and analysis of variables which change randomly in time. Their essential feature is the dependence between successive observations.
Applications occur in geophysics, engineering, economics and finance. Topics covered: Stationarity, trend estimation, seasonal decomposition, autocorrelations,
spectral and wavelet analysis, ARIMA-, GARCH- and state space models. The models and techniques are illustrated using the statistical software R.
Lecture notesNot available
LiteratureA list of references will be distributed during the course.
Prerequisites / NoticeBasic knowledge in probability and statistics
401-3612-00LStochastic Simulation
Does not take place this semester.
W5 credits3G
AbstractThis course provides an introduction to statistical Monte Carlo methods. This includes applications of simulations in various fields (Bayesian statistics, statistical mechanics, operations research, financial mathematics), algorithms for the generation of random variables (accept-reject, importance sampling), estimating the precision, variance reduction, introduction to Markov chain Monte Carlo.
ObjectiveStochastic simulation (also called Monte Carlo method) is the experimental analysis of a stochastic model by implementing it on a computer. Probabilities and expected values can be approximated by averaging simulated values, and the central limit theorem gives an estimate of the error of this approximation. The course shows examples of the many applications of stochastic simulation and explains different algorithms used for simulation. These algorithms are illustrated with the statistical software R.
ContentExamples of simulations in different fields (computer science, statistics, statistical mechanics, operations research, financial mathematics). Generation of uniform random variables. Generation of random variables with arbitrary distributions (quantile transform, accept-reject, importance sampling), simulation of Gaussian processes and diffusions. The precision of simulations, methods for variance reduction. Introduction to Markov chains and Markov chain Monte Carlo (Metropolis-Hastings, Gibbs sampler, Hamiltonian Monte Carlo, reversible jump MCMC).
Lecture notesA script will be available in English.
LiteratureP. Glasserman, Monte Carlo Methods in Financial Engineering.
Springer 2004.

B. D. Ripley. Stochastic Simulation. Wiley, 1987.

Ch. Robert, G. Casella. Monte Carlo Statistical Methods.
Springer 2004 (2nd edition).
Prerequisites / NoticeFamiliarity with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.
  •  Page  1  of  1