Search result: Catalogue data in Spring Semester 2021

Micro- and Nanosystems Master Information
Core Courses
Recommended Core Courses
Modelling and Simulation
NumberTitleTypeECTSHoursLecturers
401-3632-00LComputational StatisticsW8 credits3V + 1UM. Mächler
AbstractWe discuss modern statistical methods for data analysis, including methods for data exploration, prediction and inference. We pay attention to algorithmic aspects, theoretical properties and practical considerations. The class is hands-on and methods are applied using the statistical programming language R.
ObjectiveThe student obtains an overview of modern statistical methods for data analysis, including their algorithmic aspects and theoretical properties. The methods are applied using the statistical programming language R.
ContentSee the class website
Prerequisites / NoticeAt least one semester of (basic) probability and statistics.

Programming experience is helpful but not required.
151-0116-10LHigh Performance Computing for Science and Engineering (HPCSE) for Engineers II Information W4 credits4GP. Koumoutsakos, S. M. Martin
AbstractThis course focuses on programming methods and tools for parallel computing on multi and many-core architectures. Emphasis will be placed on practical and computational aspects of Uncertainty Quantification and Propagation including the implementation of relevant algorithms on HPC architectures.
ObjectiveThe course will teach
- programming models and tools for multi and many-core architectures
- fundamental concepts of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences
ContentHigh Performance Computing:
- Advanced topics in shared-memory programming
- Advanced topics in MPI
- GPU architectures and CUDA programming

Uncertainty Quantification:
- Uncertainty quantification under parametric and non-parametric modeling uncertainty
- Bayesian inference with model class assessment
- Markov Chain Monte Carlo simulation
Lecture notesLink
Class notes, handouts
Literature- Class notes
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein
- CUDA by example, J. Sanders and E. Kandrot
- Data Analysis: A Bayesian Tutorial, D. Sivia and J. Skilling
- An introduction to Bayesian Analysis - Theory and Methods, J. Gosh, N. Delampady and S. Tapas
- Bayesian Data Analysis, A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari and D. Rubin
- Machine Learning: A Bayesian and Optimization Perspective, S. Theodorides
Prerequisites / NoticeStudents must be familiar with the content of High Performance Computing for Science and Engineering I (151-0107-20L)
  •  Page  1  of  1