Search result: Catalogue data in Spring Semester 2021

Earth Sciences Master Information
Major in Geology
Open Choice Modules Geology
Basin Analysis
Basin Analysis: Compulsory Courses
The compulsory courses of this module take place in autumn semester.
Basin Analysis: Courses of Choice
NumberTitleTypeECTSHoursLecturers
651-4134-00LTectonic Geomorphology Information Restricted registration - show details
Prerequisite for 651-4134-01L Tectonic Geomorphology Field Course

Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.
W3 credits2VE. Deal
AbstractCourse covers the theory and applications of tectonic geomorphology. Topics include the landscape response to an earthquake, use of fluvial terraces and other geomorphic markers to map uplift, methods of dating surfaces and landscapes, topographic evolution over active structures and landscape evolution of active mountain ranges. Methods include field mapping, DEM analysis and computer modeling.
ObjectiveTo learn theoretical and practical aspects of modern tectonic geomorphology. Classroom and computer-based analysis will be combined to provide hands-on experience with geomorphic data, analysis and modeling techniques. We will work through a series of practicals based on real world case studies that will build on the concepts learned in class.
ContentCourse includes a lecture component (in second half-semester) and a series of classroom practicals. Students should also register for the associated fieldtrip component, which will hopefully be able to take place. The fieldtrip will involve collecting field data from active structures in the Northern Apennines. Lecture component will include theoretical background and analysis of real world data.
LiteratureRequired Textbook: Tectonic Geomorphology, Burbank and Anderson, Blackwell.
Prerequisites / NoticeStudents should register for both lecture and field components (blockcourse). If the fieldtrip is able to take place, they will be graded together. Fieldtrip will be held during 1 week of the semester.

Geography and Earth System Sciences students UZH may attend the lecture but will have to pay the full amount for this field course (no subsidies from UZH).
651-4018-00LBorehole GeophysicsW3 credits3GM. Hertrich, X. Ma
AbstractThis introductory course on borehole geophysical methods covers the application of borehole logging and borehole-borehole and borehole-surface seismic, and radar imaging to rock mass and reservoir characterization. The principles of operation of various logging sondes will be covered as well as their application. The emphasis is on geotechnical rather than oil and gas well reservoir engineering.
ObjectiveThe course will introduce students to modern borehole logging techniques with the emphasis on geotechnical rather than oil and gas well reservoir engineering. Although the principles of operation of the various sondes will be covered, the primary focus will be on application. For a given problem in a given environment, the students should be able to design a logging program that will furnish the requisite information. They will also be able to extract information on rock mass/reservoir properties by combining curves from a suite of logs. The students will also learn about surface-to-borehole and borehole-to-borehole seismic methods for rock mass characterisation. This will include VSP and tomography.
Content- General introduction to geophysical logging

- Discussion of various logging types including
- Caliper logs
- Televiewer logs
- Flowmeter and temperature logs
- Resistivity logs
- Nuclear logs
- Sonic logs

- Suface-to-borehole and borehole-to-borehole methods
- Instrumentation
- Vertical seismic profiling
- Crosshole tomography
- Applications
Lecture notesA pdf copy of the lecture will be posted on the course website no later than the day before each class.
LiteratureWell logging for physical properties (A handbook for Geophysicists, Geologists and Engineers), 2nd Edition, Hearst, J.R., Nelson, P.H. and F.L. Paillet, John Wiley and Son, 2001. - Out of print.

Well logging for Earth Scientists, Ellis, D.V. and J.M. Singer, 2nd Edition, Springer, 2007. In print - cost Euro 33.
Prerequisites / NoticeStudents registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link
651-4232-00LLow Temperature Thermochronology
Does not take place this semester.
W3 credits2GS. Willett
AbstractThis course presents the basic theory, methods and applications of low temperature thermochronometry, which is a fundamental tool used to study shallow crustal and earth-surface processes like burial and exhumation in orogenic belts and sedimentary basins.
ObjectiveThe objective of this course is to familiarize students with the use of thermochronometry as a tool to study shallow crustal and earth-surface processes such as burial and exhumation, brittle deformation and landform evolution.
ContentThis course presents the basic theory, methods and applications of low temperature thermochronometry. Methods covered include fission track dating, (U-Th)/He dating, and Argon dating. Theoretical aspects of track annealing, diffusion and closure of leaky systems are covered. Course includes laboratory exercises. Applications and modeling studies are presented and discussed based on select case studies.
Earthquake Seismology
Earthquake Seismology: Compulsory Courses
NumberTitleTypeECTSHoursLecturers
651-4103-00LEarthquakes II: Source PhysicsO3 credits2GA. P. Rinaldi, P. A. Selvadurai, E. R. Heimisson
AbstractThis course teaches the fundamental principles to understand physical processes leading to and governing earthquake source ruptures. To obtain that understanding we cover topics ranging from friction and fault mechanics up to earthquake source descriptions. The acquired understanding will be applied to a topic of choice to practice research skills.
ObjectiveThe aim of the course is to gain a fundamental understanding of the physical processes leading to and governing earthquake ruptures. This means that students will be able to:
- describe earthquake sources both conceptually and mathematically
- explain processes affecting earthquake nucleation, propagation and arrest
- explain processes affecting inter-, co-, and postseismic
- differentiate source kinematic and dynamic concepts
- interpret earthquake source properties from both perspectives
- derive fundamental equations in elasto-statistics and dynamics
- interpret earthquake occurrences and put them in perspective
- address fundamental questions in earthquake physics
- critically assess and discuss scientific literature
ContentWe will cover a range of topics, including:
- a summary of basics of earthquake mechanics: definitions, faults, elastic rebound theory, and source parameters
- Mathematical description of the source
- Representation theorem, point and extended sources, source spectra
- Source inversion
- Linear Elastic Fracture Mechanics quasi-static and dynamic
- Rupture nucleation, propagation and arrest
- Energy partitioning
- Fault mechanics and friction laws
- Earthquake statistics and interaction

After a theoretical understanding has been acquired, we invite students to apply this knowledge to their topic of preference by presenting a group of state-of-the-art and/or classical papers as a final project. This will require them to understand and evaluate current challenges and state-of-the-art practices in earthquake physics. Additionally, this stimulates participants to improve their skills to:
- critically analyze (to be) published papers
- disseminate knowledge within their own and neighboring research fields
- formulate their opinion, new ideas and broader implications
- present their findings to an audience
- ask questions and actively participate in discussions on new scientific ideas

An interactive laboratory demonstration will be performed and the data will be used to validate theoretical formulations discussed in class. The experiment will illuminate frictional behaviour and energy partitioning with first hand experience.

The course will be evaluated in 3 parts:
- a report on laboratory demonstration
- a presentation discussing a topic of chose based on a group of suggested papers
- an oral in-class examination with peer interaction

The course is worth 3 credit points, and a satisfactory total grade (4 or better) is needed to obtain 3 ECTS. The lab demonstration report has a weight of 20% and the presentation and oral in-class examination weigh for 40% each.
Lecture notesCourse notes will be made available on a designated course web site. An overview of the discussed principles are available in the three books mentioned below.
Literature- The Mechanics of Earthquakes and Faulting by Ch. Scholz (2002), Cambridge University Press

- Quantitative Seismology by K. Aki and P.G. Richards (2nd edition, 2002), University Science Books.

- Source Mechanisms of Earthquakes, Theory and Practice by Udias, Madariaga and Buforn (2014), Cambridge University Press.
Prerequisites / NoticeWe recommend to have taken Earthquakes 1: Seismotectonics, although a decent understanding of physics, mathematics (i.e. linear algebra, tensor calculus, and differential equations), seismology, and/or continuum mechanics can compensate for that.

The course will be given in English.
Earthquake Seismology: Compulsory Courses
One additional elective course of at least 3KP has to be completed for this Module according to prior agreement with the Study Advisor (Autumn or Spring Semester).
Geographic Information Systems
The courses of this module are offered by UZH and must be registered at UZH.
Geographic Information Systems: Compulsory Courses
The compulsory courses of this module take place in autumn semester.
Geographic Information Systems: Courses of Choice
The courses of choice may be chosen from the offerings of the department of Geography UZH according to prior approval by the lecturers of the GIS-group of UZH.
NumberTitleTypeECTSHoursLecturers
651-4278-00LMonitoring the Earth from Satellites: Radar Interferometry Restricted registration - show details
Number of participants limited to 30.
W3 credits3GA. Manconi
AbstractA novel and unique course on space-borne SAR tailored to geosciences. Students will develop independently projects on real case-studies by leveraging open source data and software. Students' performance will be assessed by peers and by an international steering committee during a mini-conference. The course is a pilot project in the Innovedum framework.
ObjectiveThe course aims at providing the tools to fully take advantage of space-borne SAR data in geoscience applications. The course will offer the chance to learn a cutting-edge remote sensing technique and to independently apply the methods to real scenarios relevant for their future activities as scientists and/or practitioners.
ContentThe activities of the course will show how to properly select and obtain SAR datasets, process them according to the state-of-art algorithms, interpret the results, evaluate pros and cons on specific geological targets, and integrate the analysis of SAR data with other survey and monitoring approaches. Moreover, practical exercises and field excursions are designed to pursue the “Learning by doing” concept.
Prerequisites / NoticeThis course requires a background in Earth Sciences, thus the tapriority is to MSc students of the D-ERDW. In the case the course attracts the attention of BSc, MSc, and PhD students from other ETH departments and/or other universities, they will be accepted provided that the maximum number of participants does not exceed15 per year.
Glaciology
Glaciology: Obligatorische Fächer
NumberTitleTypeECTSHoursLecturers
651-1504-00LSnowcover: Physics and ModellingO4 credits3GM. Schneebeli, H. Löwe
AbstractSnow is a fascinating high-temperature material and relevant for applications in glaciology, hydrology, atmospheric sciences, polar climatology, remote sensing and natural hazards. This course introduces key concepts and underlying physical principles of snow, ranging from individual crystals to polar ice sheets.
ObjectiveThe course aims at a cross-disciplinary overview about the phenomenology of relevant processes in the snow cover, traditional and advanced experimental methods for snow measurements and theoretical foundations with key equations required for snow modeling. Tutorials and short presentations will also consider the bigger picture of snow physics with respect to climatology, hydrology and earth science.
ContentThe lectures will treat snow formation, crystal growth, snow microstructure, metamorphism, ice physics, snow mechanics, heat and mass transport in the snowcover, surface energy balance, snow models, wind transport, snow chemistry, electromagnetic properties, experimental techniques.

The tutorials include a demonstration/exercise part and a presentation part. The demonstration/exercise part consolidates key subjects of the lecture by means of small data sets, mathematical toy models, order of magnitude estimates, image analysis and visualization, small simulation examples, etc. The presentation part comprises short presentations (about 15 min) based on selected papers in the subject.

First practical experience with modern methods measuring snow properties can be acquired in a field excursion.
Lecture notesLecture notes and selected publications.
Prerequisites / NoticeWe strongly recommend the field excursion to Davos on Saturday, March 14, 2020, in Davos. We will demonstrate traditional and modern field-techniques (snow profile, Near-infrared photography, SnowMicroPen) and you will have the chance to use the instruments yourself. The excursion includes a visit of the SLF cold laboratories with the micro-tomography setup and the snowmaker.
Glaciology: Courses of Choice
NumberTitleTypeECTSHoursLecturers
101-0288-00LSnow and Avalanches: Processes and Risk ManagementW3 credits2GJ. Schweizer, S. L. Margreth
AbstractThe lecture covers snow and avalanche processes as well as preventive protection measures in the context of integral risk management.
Objective- basics of snow and avalanche mechanics
- methods to model snow and avalanche processes
- interaction of snow and avalanches with structures and forest
- methods of stability evaluation and hazard assessment
- avalanche protection measures in the context of integral risk management
- basics on the design and effectiveness of protection measures
ContentIntroduction, snow precipitation, extreme events, snow loads; snow and snow cover properties; snow-atmosphere interaction; avalanche formation; stability evaluation, avalanche forecasting; avalanche dynamics; avalanche impact on structures; hazard mapping; protection measures (permanent and temporary); integral risk management.
LiteratureArmstrong, R.L. and Brun, E. (Editors), 2008. Snow and Climate - Physical processes, surface energy exchange and modeling. Cambridge University Press, Cambridge, U.K., 222 pp.

BUWAL/SLF, 1984. Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen Tätigkeiten. EDMZ, Bern.

Egli, T., 2005. Wegleitung Objektschutz gegen gravitative Naturgefahren, Vereinigung Kantonaler Feuerversicherungen (Hrsg.), Bern.

Fierz, C., Armstrong, R.L., Durand , Y., Etchevers, P., Greene, E., McClung, D.M., Nishimura, K., Satyawali, P.K. and Sokratov, S.A., 2009. The International Classification for Seasonal Snow on the Ground. HP-VII Technical Documents in Hydrology, 83. UNESCO-IHP, Paris, France, 90 pp.

Furukawa, Y. and Wettlaufer, J.S., 2007. Snow and ice crystals. Physics Today, 60(12): 70-71.

Margreth, S., 2007. Technische Richtlinie für den Lawinenverbau im Anbruchgebiet. Bundesamt für Umwelt, Bern, WSL Eidg. Institut für Schnee- und Lawinenforschung Davos. 134 S.

McClung. D.M. and Schaerer, P. 2006. The Avalanche Handbook, 3rd ed., The Mountaineers, Seattle.

Mears, A.I., 1992. Snow-avalanche hazard analysis for land-use planning and engineering. 49, Colorado Geological Survey.

Schweizer, J., Bartelt, P. and van Herwijnen, A., 2015. Snow avalanches. In: W. Haeberli and C. Whiteman (Editors), Snow and Ice-Related Hazards, Risks and Disasters. Hazards and Disaster Series. Elsevier, pp. 395-436.

Schweizer, J., Jamieson, J.B. and Schneebeli, M., 2003. Snow avalanche formation. Reviews of Geophysics, 41(4): 1016, doi:10.1029/2002RG000123.

Shapiro, L.H., Johnson, J.B., Sturm, M. and Blaisdell, G.L., 1997. Snow mechanics - Review of the state of knowledge and applications. Report 97-3, US Army CRREL, Hanover, NH, U.S.A.
Prerequisites / NoticeFull-day excursion (not mandatory) to Davos, hands-on experience on selected topcis, visit at WSL Institute for Snow and Avalanche Research SLF (early March)
651-4162-00LField Course Glaciology Information
Priority is given to ETHZ students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.

No registration through myStudies. The registration for excursions and field courses goes through Link only (registration opens end of January 2021).
W3 credits6PA. Bauder, D. Farinotti, M. Werder
AbstractIntroduction to investigation methods in glaciology with both theory and experimental application. The students design, plan, and evaluate their individual projects, and present the results to their colleagues and the instructors.
Objective- Introduction to measurement techniques in glaciology
- Experience with realisation of measurement and data analysis
- Interpretation and presentation of results
ContentThe course covers methodologies and techniques to analyse physical conditions of glaciers and their evolution. Basic measurement techniques of surveying, drilling as well as working with sensors and data loggers are introduced. Covered fields include topographical setting, mass balance, glacier fluctuations, ice flow and glacier hydrology.
The course starts with an introduction toward the end of the spring semester and is followd by 8 days in August/September including lectures at ETH and field work on Rhonegletscher.
Prerequisites / NoticeBasic knowledge in glaciology e.g. course 651-3561-00L Kryosphäre is recommended.
This field course is organized in collaboration with the University of Hokkaido in Sapporo.

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link
651-1506-00LThe High-Mountain Cryosphere: Processes and Risks (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: GEO856

Mind the enrolment deadlines at UZH:
Link
W3 credits2GUniversity lecturers
AbstractGlaciers in the climate system, ice ages, ice drill cores, natural hazards in glacier areas, sea level change.
ObjectiveSpecial knowledge about snow and ice, especially in high mountains
651-1513-00LField Studies on High Mountain Processes (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: GEO411

Mind the enrolment deadlines at UZH:
Link
W6 credits2S + 4PUniversity lecturers
AbstractThe preparatory seminar introduces through practicals the theoretical background and methods as well as related equipment for conducting field-studies on processes in high mountain areas.
ObjectiveBesides getting familiar with specific methods and field equipment (including ice-penetrating radar, temperature logging, melt measurements and modelling, geomorphological mapping, sampling strategies, ...) it conveys the development and practical aspects of field-project studies in high mountains areas.
ContentThe module consists of two parts: (i) the preparatory seminar introducing the field-approaches and related background in practical seminars (4h, bi-weekly practicals in FS, compulsory). (ii) the field course (5-day, July, compulsory) in which the students work on their own project in the field (Tiefengletscher area, Albert Heim Hütte) using the methods and tools from the preparatory seminar. This module as a whole will also contribute to a deeper understanding of the physical processes and their interactions in high mountain areas.
Lecture notesCourse information and documents will be provided over OLAT, Fieldcourse guide
Prerequisites / NoticeModul GEO231 or equivalent
Lithosphere Structure and Tectonics
NumberTitleTypeECTSHoursLecturers
651-4096-00LInverse Theory I: BasicsO3 credits2VA. Fichtner
AbstractInverse theory is the art of inferring properties of a physical system from noisy and sparse observations. It is used to transform observations of waves into 3D images of a medium seismic tomography, medical imaging and material science; to constrain density in the Earth from gravity; to obtain probabilities of life on exoplanets ... . Inverse theory is at the heart of many natural sciences.
ObjectiveThe goal of this course is to enable students to develop a mathematical formulation of specific inference (inverse) problems that may arise anywhere in the physical sciences, and to implement suitable solution methods. Furthermore, students should become aware that nearly all relevant inverse problems are ill-posed, and that their meaningful solution requires the addition of prior knowledge in the form of expertise and physical intuition. This is what makes inverse theory an art.
ContentThis first of two courses covers the basics needed to address (and hopefully solve) any kind of inverse problem. Starting from the description of information in terms of probabilities, we will derive Bayes' Theorem, which forms the mathematical foundation of modern scientific inference. This will allow us to formalise the process of gaining information about a physical system using new observations. Following the conceptual part of the course, we will focus on practical solutions of inverse problems, which will lead us to study Monte Carlo methods and the special case of least-squares inversion.

In more detail, we aim to cover the following main topics:

1. The nature of observations and physical model parameters
2. Representing information by probabilities
3. Bayes' theorem and mathematical scientific inference
4. Random walks and Monte Carlo Methods
5. The Metropolis-Hastings algorithm
6. Simulated Annealing
7. Linear inverse problems and the least-squares method
8. Resolution and the nullspace
9. Basic concepts of iterative nonlinear inversion methods

While the concepts introduced in this course are universal, they will be illustrated with numerous simple and intuitive examples. These will be complemented with a collection of computer and programming exercises.

Prerequisites for this course include (i) basic knowledge of analysis and linear algebra, (ii) basic programming skills, for instance in Matlab or Python, and (iii) scientific curiosity.
Lecture notesPresentation slides and detailed lecture notes will be provided.
Prerequisites / NoticeThis course is offered as a half-semester course during the first part of the semester
Palaeontology
Palaeontology: Courses of Choice
Courses to be discussed with Palaeontological Institute (UZH) or Climate Geology Group.
NumberTitleTypeECTSHoursLecturers
651-1380-00LPalaeontological Excursions (University of Zürich) Information
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: BIO279

Mind the enrolment deadlines at UZH:
Link
W1 credit1PUniversity lecturers
AbstractEin- oder zweitägige Geländeaufenthalte (eventuell mit Museumsbesuch) zum Vertiefen regionalgeologischer und erdgeschichtlicher Kenntnisse sowie zum Sammeln praktischer paläontologischer Erfahrungen.
ObjectiveBesuch von Fossilvorkommen im In- und Ausland, um die Erhaltung der Fossilien, die fazielle Ausbildung und die Stratigraphie der fossilführenden Schichten kennenzulernen und zu diskutieren sowie gegebe- nenfalls Fossilien zu sammeln.
ContentBevorzugte Ziele ein- und zweitägiger Exkursionen sind: Jura der Nordschweiz und von Süddeutschland. Kreide des westlichen Juragebirges und des Helvetikums. Mesozoikum des Südtessins, speziell des Monte San Giorgio. Molasse der weiteren Umgebung von Zürich.
Ziele mehrtägiger Exkursionen sind u. a.: Mesozoikum und Tertiär der Südalpen. Tertiär des Wiener Beckens. Paläozoikum der Eifel, des Barrandiums, von Gotland und von Wales. Jura von Südengland. Jura und Kreide von Südfrankreich. Paläozoikum und Mesozoikum in Spanien. Aktuopaläontologie im Watt der Nordsee.
651-1392-00LPalaeontological Colloquium (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: BIO571

Mind the enrolment deadlines at UZH:
Link
Z0 credits1KUniversity lecturers
AbstractTalks and discussion on current topics in Palaeontology (Palaeobotany, Palaeozoology and Micropalaeontology).
ObjectiveSpezielle Vertiefung paläontologischer Kenntnisse.
ContentVorträge von Institutsangehörigen und eingeladenen Gästen aus dem In- und Ausland über aktuelle Themen aus dem Gesamtgebiet der Paläontologie (Paläobotanik, Paläozoologie und Mikropaläontologie) mit anschliessender Diskussion.
Palaeontology: Compulsory Courses
NumberTitleTypeECTSHoursLecturers
651-4044-04LMicropalaeontology and Molecular PalaeontologyO3 credits2GH. Stoll, C. De Jonge, T. I. Eglinton, I. Hernández Almeida
AbstractThe course aims to provide an introduction to the key micropaleontological and molecular fossils from marine and terrestrial niches, and the use of these fossils for reconstructing environmental and evolutionary changes.
ObjectiveThe course aims to provide an introduction to the key micropaleontological and molecular fossils from marine and terrestrial niches, and the use of these fossils for reconstructing environmental and evolutionary changes.

The course will include laboratory exercises with microscopy training: identification of plantonic foraminifera and the application of transfer functions, identification of calcareous nannoliths and estimation of water column structure and productivity with n-ratio, identification of major calcareous nannofossils for Mesozoic-cenozoic biostratigraphy, Quaternary radiolarian assemblages and estimation of diversity indices.
The course will include laboratory exercises on molecular markers include study of chlorin extracts, alkenone and TEX86 distributions and temperature reconstruction, and terrestrial leaf wax characterization, using GC-FID, LC-MS, and spectrophotometry.
ContentMicropaleontology and Molecular paleontology
1. Introduction to the domains of life and molecular and mineral fossils. Genomic classifications of domains of life. Biosynthesis and molecular fossils and preservation/degradation. Biomineralization and mineral fossils and preservation/dissolution. Review of stable isotopes in biosynthesis.
2. The planktic niche – primary producers. Resources and challenges of primary production in the marine photic zone – light supply, nutrient supply, water column structure and niche partitioning. Ecological strategies and specialization, bloom succession, diversity and size gradients in the modern ocean. Introduction to principal mineralizing phytoplankton – diatoms, coccolithophores, dynoflagellates, as well as cyanobacteria. Molecular markers including alkenones, long-chain diols and sterols, IP25, pigments, diatom UV-absorbing compounds. Application of fossils and markers as environmental proxies. Long term evolutionary evidence for originations, radiations, and extinctions in microfossils and biomarkers; evolution of size trends in phytoplankton over Cenozoic, geochemical evidence for evolution of carbon concentrating mechanisms. Introduction to nannofossil biostratigraphy.
3. The planktic niche – heterotrophy from bacteria to zooplankton. Resources and challenges of planktic heterotrophy – food supply, oxygen availability, seasonal cycles, seasonal and vertical niche partitioning. Introduction to principal mineralizing zooplankton planktic foraminifera and radiolaria: ecological strategies and specialization, succession, diversity and size gradients in the modern ocean. Morphometry and adaptations for symbiont hosting. Molecular records such as isorenieratene and Crenoarcheota GDGT; the debate of TEX86 temperature production. Long term evolutionary evidence for originations, radiations, and extinctions in microfossils; evolution of size and form, basic biostratigraphy. Molecular evidence of evolution including diversification of sterol/sterine assemblages.
4. The benthic niche – continental margins. Resources and challenges of benthic heterotrophy – food supply, oxygen, turbulence and substrate. Principal mineralizing benthic organisms – benthic foraminifera and ostracods. Benthic habitat gradients (infaunal and epifaunal; shallow to deep margin. Microbial redox ladder in sediments. Molecular markers of methanogenesis and methanotrophy, Anamox markers, pristine/phytane redox indicator. Applications of benthic communities for sea level reconstructions. Major originations and extinctions.
5. The benthic niche in the abyssal ocean. Resources and challenges of deep benthic heterotrophy. Benthic foraminifera, major extinctions and turnover events. Relationship to deep oxygen level and productivity.
6. Terrestrial dry niches -soils and trees. Resources and challenges - impacts of temperature, humidity, CO2 and soil moisture on terrestrial vegetation and microbial reaction and turnover. Introduction to pollen and molecular markers for soil pH, humidity, leaf wax C3-C4 community composition and hydrology. Long term evolution of C4 pathway, markers for angiosperm and gymnosperm evolution.
7. Terrestrial aquatic environments – resources and challenges. Lake systems, seasonal mixing regimes, eutrophication, closed/open systems. Introduction to lacustrine diatoms, chironomids, testate amoeba. Molecular markers in lake/box environments including paleogenomics of communities.
Lecture notesA lab and lecture manual will be distributed at the start of the course and additional material will be available in the course Moodle
LiteratureKey references from primary literature will be provided as pdf on the course moodle.
Prerequisites / NoticeTiming: The course starts on February 19 and ends on May 28. Prerequisites: Recall and remember what you learned in introductory chemistry and biology
Quaternary Geology and Geomorphology
NumberTitleTypeECTSHoursLecturers
651-4902-00LQuaternary Geology and Geomorphology of the Alps Information Restricted registration - show details
Geography and Earth System Sciences students UZH may attend the lecture but will have to pay the full amount for the excursion (no subsidies from UZH).
O3 credits2VS. Ivy Ochs, N. Akçar, U. H. Fischer
AbstractAfter a brief introduction to the scientific principles of glaciology, we survey the present state of knowledge on Pleistocene glacial periods and post-glacial landscape modification in the Alps. Emphasis is on understanding modes of formation of landscape elements attributable to glacial, glaciofluvial, periglacial, fluvial, hillslope, and mass wasting processes.
ObjectiveThrough a combination of lectures, classroom practical exercises, and field mapping of Quaternary landforms, an intuitive understanding of the formation and evolution of the landscape of the Alps and the forelands will be built up.
We focus on development of the following skills: landform recognition on remote imagery and in the field; depositional process identification based on sediment characterization; reconstruction of valley-scale geomorphological evolutionary sequences.
ContentThe following topics will be covered: glacier mass and energy balance; glacier motion; glacier hydrology; glacial erosion; glacial sediment balance; piedmont and valley glacier landsystems; till formation; glaciofluvial sediments; alluvial and debris-flow fan processes; Alpine rock slope failure landform/sediment associations; Alpine Quaternary stratigraphy; long-term uplift and denudation of the Alps.
Lecture notesSlides from the lectures will be made available.
LiteratureLists of key scientific articles will be given for each topic.
Relevant scientific articles will be distributed during the course.
Prerequisites / NoticeStudents registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link

Required attendance at lectures and excurisions (several 1-day excursions during the semester and one 3-day field mapping session during the summer).

Geography and Earth System Sciences students UZH may attend this excursion at full costs (no subsidies from UZH).

Grading will be a combination of classroom participation, student presentations, practical exercises, field reports, and field maps from the excursions.
651-4134-00LTectonic Geomorphology Information Restricted registration - show details
Prerequisite for 651-4134-01L Tectonic Geomorphology Field Course

Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.
W3 credits2VE. Deal
AbstractCourse covers the theory and applications of tectonic geomorphology. Topics include the landscape response to an earthquake, use of fluvial terraces and other geomorphic markers to map uplift, methods of dating surfaces and landscapes, topographic evolution over active structures and landscape evolution of active mountain ranges. Methods include field mapping, DEM analysis and computer modeling.
ObjectiveTo learn theoretical and practical aspects of modern tectonic geomorphology. Classroom and computer-based analysis will be combined to provide hands-on experience with geomorphic data, analysis and modeling techniques. We will work through a series of practicals based on real world case studies that will build on the concepts learned in class.
ContentCourse includes a lecture component (in second half-semester) and a series of classroom practicals. Students should also register for the associated fieldtrip component, which will hopefully be able to take place. The fieldtrip will involve collecting field data from active structures in the Northern Apennines. Lecture component will include theoretical background and analysis of real world data.
LiteratureRequired Textbook: Tectonic Geomorphology, Burbank and Anderson, Blackwell.
Prerequisites / NoticeStudents should register for both lecture and field components (blockcourse). If the fieldtrip is able to take place, they will be graded together. Fieldtrip will be held during 1 week of the semester.

Geography and Earth System Sciences students UZH may attend the lecture but will have to pay the full amount for this field course (no subsidies from UZH).
651-1513-00LField Studies on High Mountain Processes (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: GEO411

Mind the enrolment deadlines at UZH:
Link
W6 credits2S + 4PUniversity lecturers
AbstractThe preparatory seminar introduces through practicals the theoretical background and methods as well as related equipment for conducting field-studies on processes in high mountain areas.
ObjectiveBesides getting familiar with specific methods and field equipment (including ice-penetrating radar, temperature logging, melt measurements and modelling, geomorphological mapping, sampling strategies, ...) it conveys the development and practical aspects of field-project studies in high mountains areas.
ContentThe module consists of two parts: (i) the preparatory seminar introducing the field-approaches and related background in practical seminars (4h, bi-weekly practicals in FS, compulsory). (ii) the field course (5-day, July, compulsory) in which the students work on their own project in the field (Tiefengletscher area, Albert Heim Hütte) using the methods and tools from the preparatory seminar. This module as a whole will also contribute to a deeper understanding of the physical processes and their interactions in high mountain areas.
Lecture notesCourse information and documents will be provided over OLAT, Fieldcourse guide
Prerequisites / NoticeModul GEO231 or equivalent
Remote Sensing
The courses of this module are offered by UZH and must be registered at UZH.
Remote Sensing: Compulsory Courses
The compulsory courses for this module take place in autumn semester.
Remote Sensing: Courses of Choice
NumberTitleTypeECTSHoursLecturers
651-2332-00LSpecializing in Remote Sensing Seminar and Colloquium (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: GEO441

Mind the enrolment deadlines at UZH:
Link
W6 credits1S + 2KUniversity lecturers
AbstractThis course is composed of the remote sensing colloquium, which offers scientific talks on diverse remote sensing topics, and the seminar, which tackles various research questions in group projects.
Objectivehe colloquium serves the purpose of broadening the view on remote sensing related topics as well as fostering international contacts and cooperation. Furthermore, it offers a forum to engage in scientific discussions on remote sensing topics.
The seminar is a platform to get involved in a group project, which highlights the need for teamwork and collaboration in most working environments. Students will be able to bring all previously acquired skills to the table to develop concepts, analyze datasets and discuss results. Furthermore, they will improve their scientific writing and presentation skills.
ContentThe choice of specific hypotheses being tested on the dataset is more open than in other courses. After the full analysis has been applied (including processing steps developed within the group), the results will be written up in a project report, and also presented in a mini- colloquium. Together with the content of the work, scientific writing and presentation skills will be evaluated and discussed. During the first lecture, groups will be formed and topics distributed. Not attending without notice may result in working alone on a topic.
651-4278-00LMonitoring the Earth from Satellites: Radar Interferometry Restricted registration - show details
Number of participants limited to 30.
W3 credits3GA. Manconi
AbstractA novel and unique course on space-borne SAR tailored to geosciences. Students will develop independently projects on real case-studies by leveraging open source data and software. Students' performance will be assessed by peers and by an international steering committee during a mini-conference. The course is a pilot project in the Innovedum framework.
ObjectiveThe course aims at providing the tools to fully take advantage of space-borne SAR data in geoscience applications. The course will offer the chance to learn a cutting-edge remote sensing technique and to independently apply the methods to real scenarios relevant for their future activities as scientists and/or practitioners.
ContentThe activities of the course will show how to properly select and obtain SAR datasets, process them according to the state-of-art algorithms, interpret the results, evaluate pros and cons on specific geological targets, and integrate the analysis of SAR data with other survey and monitoring approaches. Moreover, practical exercises and field excursions are designed to pursue the “Learning by doing” concept.
Prerequisites / NoticeThis course requires a background in Earth Sciences, thus the tapriority is to MSc students of the D-ERDW. In the case the course attracts the attention of BSc, MSc, and PhD students from other ETH departments and/or other universities, they will be accepted provided that the maximum number of participants does not exceed15 per year.
Shallow Earth Geophysics
NumberTitleTypeECTSHoursLecturers
651-4106-03LGeophysical Field Work and Processing: Preparation and Field Work Information O7 credits3V + 11PC. Schmelzbach, P. Nagy, A. Wieser
AbstractThe 'Preparation' and 'Field Work' parts of 'Geophysical Field Work and Processing' involve the planing and conducting of a near-surface geophysical field campaign using common geophysical techniques to study, for example, archeological remains, internal structures of landslides or aquifers. Students work in small groups, and plan, acquire, process and document a field campaign together.
ObjectiveStudents should acquire the knowledge to (1) design and plan a geophysical survey appropriate for the target of investigation, (2) acquire geophysical data, (3) process the data using state-of-the-art techniques and software, (3) analyze and interpret the results, and (4) write a report according to commercial and scientific standards.
ContentThe course is split into two parts:

1. 'Preparation': Introductory lectures and exercises (lab and field) covering Geographical Information Systems (GIS), surveying, and introductions to the field sites. Participation in the 'Preparation' part is a REQUIREMENT to participate in the 'Field Work' part.

2. 'Field Work': Four-weeks field course. The students work in groups on the following topics:
- Planning and design of a comprehensive geophysical survey
- Data acquisition
- Data processing and inversion
- Interpretation of the results
- Report writing
Lecture notesRelevant reading material, manuals and instructions for all methods of the field course will be handed out to each group at the beginning of the 'Field Work' part (beginning of June).
Prerequisites / NoticeA "pass" (Swiss grade 4.0 or higher) in the written examination of 651-4104-00 V Geophysical Fieldwork and Processing: Methods, is an absolute REQUIREMENT to participate in this course.

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link
  •  Page  1  of  2 Next page Last page     All