Search result: Catalogue data in Autumn Semester 2020

Integrated Building Systems Master Information
Main Courses
Specialised Courses
NumberTitleTypeECTSHoursLecturers
151-0185-00LRadiation Heat Transfer Information W4 credits2V + 1UA. Steinfeld, P. Pozivil
AbstractAdvanced course in radiation heat transfer
ObjectiveFundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and other applications in the field of energy conversion and material processing.
Content1. Introduction to thermal radiation. Definitions. Spectral and directional properties. Electromagnetic spectrum. Blackbody and gray surfaces. Absorptivity, emissivity, reflectivity. Planck's Law, Wien's Displacement Law, Kirchhoff's Law.

2. Surface radiation exchange. Diffuse and specular surfaces. Gray and selective surfaces. Configuration factors. Radiation exchange. Enclosure theory, radiosity method. Monte Carlo.

3.Absorbing, emitting and scattering media. Extinction, absorption, and scattering coefficients. Scattering phase function. Optical thickness. Equation of radiative transfer. Solution methods: discrete ordinate, zone, Monte-Carlo.

4. Applications. Cavities. Selective surfaces and media. Semi-transparent windows. Combined radiation-conduction-convection heat transfer.
Lecture notesCopy of the slides presented.
LiteratureR. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 3rd. ed., Taylor & Francis, New York, 2002.

M. Modest, Radiative Heat Transfer, Academic Press, San Diego, 2003.
151-0103-00LFluid Dynamics IIW3 credits2V + 1UP. Jenny
AbstractTwo-dimensional irrotational (potential) flows: stream function and potential, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.
ObjectiveExpand basic knowledge of fluid dynamics.
Concepts, phenomena and quantitative description of irrotational (potential), rotational, and one-dimensional compressible flows.
ContentTwo-dimensional irrotational (potential) flows: stream function and potential, complex notation, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.
Lecture notesLecture notes are available (in German).
(See also info on literature below.)
LiteratureRelevant chapters (corresponding to lecture notes) from the textbook

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Prerequisites / NoticeAnalysis I/II, Knowledge of Fluid Dynamics I, thermodynamics of ideal gas
401-0647-00LIntroduction to Mathematical Optimization Restricted registration - show details W5 credits2V + 1UD. Adjiashvili
AbstractIntroduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering.
ObjectiveThe goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.
ContentTopics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.
LiteratureInformation about relevant literature will be given in the lecture.
Prerequisites / NoticeThis course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics. Compared to "Mathematical Optimization", this course has a stronger focus on modeling and applications.
227-0477-00LAcoustics IW6 credits4GK. Heutschi
AbstractIntroduction to the fundamentals of acoustics in the area of sound field calculations, measurement of acoustical events, outdoor sound propagation and room acoustics of large and small enclosures.
ObjectiveIntroduction to acoustics. Understanding of basic acoustical mechanisms. Survey of the technical literature. Illustration of measurement techniques in the laboratory.
ContentFundamentals of acoustics, measuring and analyzing of acoustical events, anatomy and properties of the ear. Outdoor sound propagation, absorption and transmission of sound, room acoustics of large and small enclosures, architectural acoustics, noise and noise control, calculation of sound fields.
Lecture notesyes
101-0577-00LAn Introduction to Sustainable Development in the Built EnvironmentW3 credits2GG. Habert, D. Kaushal
AbstractIn 2015, the UN Conference in Paris shaped future world objectives to tackle climate change.
in 2016, other political bodies made these changes more difficult to predict.
What does it mean for the built environment?
This course provides an introduction to the notion of sustainable development when applied to our built environment
ObjectiveAt the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.
ContentThe following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world

- Synthesis: Transition to sustainable development
Lecture notesAll relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.
LiteratureA list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.
101-0417-00LTransport Planning MethodsW6 credits4GA. Erath Rusterholtz, M. van Eggermond
AbstractThe course provides the necessary knowledge to develop models supporting and also evaluating the solution of given planning problems.
The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/ policy by means of cost-benefit analysis.
Objective- Knowledge and understanding of statistical methods and algorithms commonly used in transport planning
- Comprehend the reasoning and capabilities of transport models
- Ability to independently develop a transport model able to solve / answer planning problem
- Getting familiar with cost-benefit analysis as a decision-making supporting tool
ContentThe course provides the necessary knowledge to develop models supporting the solution of given planning problems and also introduces cost-benefit analysis as a decision-making tool. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations.

To cope with that, the problem is divided into sub-problems, which are solved using various statistical models (e.g. regression, discrete choice analysis) and algorithms (e.g. iterative proportional fitting, shortest path algorithms, method of successive averages).

The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/ policy by means of cost-benefit analysis. Interim lab session take place regularly to guide and support students with the applied part of the course.
Lecture notesMoodle platform (enrollment needed)
LiteratureWillumsen, P. and J. de D. Ortuzar (2003) Modelling Transport, Wiley, Chichester.

Cascetta, E. (2001) Transportation Systems Engineering: Theory and Methods, Kluwer Academic Publishers, Dordrecht.

Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice Hall, Englewood Cliffs.

Schnabel, W. and D. Lohse (1997) Verkehrsplanung, 2. edn., vol. 2 of Grundlagen der Strassenverkehrstechnik und der Verkehrsplanung, Verlag für Bauwesen, Berlin.

McCarthy, P.S. (2001) Transportation Economics: A case study approach, Blackwell, Oxford.
101-0507-00LInfrastructure Management 3: Optimisation ToolsW6 credits2GB. T. Adey
AbstractThis course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure.
ObjectiveUpon successful completion of this course students will be able:
- to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure
- to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure
- to use operation research methods to find optimal solutions to infastructure management problems
ContentPart 1:
Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies

Part 2:
Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models

Part 3:
Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies

Part 4:
Explanation of how operations research methods can be used to solve typical infrastructure management problems.
Lecture notesA script will be given out at the beginning of the course.
Class relevant materials will be distributed electronically before the start of class.
A copy of the slides will be handed out at the beginning of each class.
Prerequisites / NoticeSuccessful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course.
363-0387-00LCorporate SustainabilityW3 credits2GV. Hoffmann, J. Meuer
AbstractThe lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. In the Autumn Semester 2020, the lecture will be taught fully online. During the lecture phase, students will learn central concepts of corporate sustainability; during the track they work in teams on solving sustainability challenges.
ObjectiveAfter completing this course, students will be able to:
- Assess the limits and the potential of companies to sustainable development
- Critically evaluate and formulate statements, decisions, and arguments in the context of corporate sustainability
- Recognize and realize opportunities for corporate sustainability in a business environment
ContentThe course has a lecture phase (week 1-6) and a track phase (week 7-13). During the lecture phase, students will learn about why corporate sustainability matters, complete several video tutorials and e-modules to understand important concepts of corporate sustainability, and critically apply these concepts in the context of a case study. The lecture phase builds the foundation for the track phase.
During the track phase, students participate in one of four tracks in which researchers coach teams of 4-5 students towards a final project. Our ambition is that students improve their analytic and organizational skills and can confidently pursue corporate sustainability in a professional setting. Course participants share the result of their group work in a group puzzle session.
The course concludes with a reflection session and the final exam.
Link
Lecture notesPresentation slides and video scripts will be available on Moodle.
LiteratureThe Syllabus for the lecture contains recommended readings for each session.
402-0809-01LIntroduction to Computational Physics (for Civil Engineers)W4 credits2V + 1UA. Adelmann
AbstractThis course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and super computers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and complex networks.
ObjectiveStudents learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.
ContentIntroduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce the most important object-oriented programming methods for numerical simulations (typically in C++). Furthermore, an overview of existing software libraries for numerical simulations is presented.
Lecture notesLecture notes and slides are available online and will be distributed if desired.
LiteratureLiterature recommendations and references are included in the lecture notes.
Prerequisites / NoticeLecture and exercse lessons in english
402-0809-00LIntroduction to Computational PhysicsW8 credits2V + 2UA. Adelmann
AbstractThis course offers an introduction to computer simulation methods for physics problems and their implementation on PCs and super computers. The covered topics include classical equations of motion, partial differential equations (wave equation, diffusion equation, Maxwell's equations), Monte Carlo simulations, percolation, phase transitions, and complex networks.
ObjectiveStudents learn to apply the following methods: Random number generators, Determination of percolation critical exponents, numerical solution of problems from classical mechanics and electrodynamics, canonical Monte-Carlo simulations to numerically analyze magnetic systems. Students also learn how to implement their own numerical frameworks and how to use existing libraries to solve physical problems. In addition, students learn to distinguish between different numerical methods to apply them to solve a given physical problem.
ContentIntroduction to computer simulation methods for physics problems. Models from classical mechanics, electrodynamics and statistical mechanics as well as some interdisciplinary applications are used to introduce the most important object-oriented programming methods for numerical simulations (typically in C++). Furthermore, an overview of existing software libraries for numerical simulations is presented.
Lecture notesLecture notes and slides are available online and will be distributed if desired.
LiteratureLiterature recommendations and references are included in the lecture notes.
Prerequisites / NoticeLecture and exercise lessons in english, exams in German or in English
101-0187-00LStructural Reliability and Risk AnalysisW3 credits2GS. Marelli
AbstractStructural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment.
ObjectiveThe goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field.
ContentEngineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making.

The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented.

The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information.

The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented.

The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis.
Lecture notesSlides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester.
LiteratureAng, A. and Tang, W.H, Probability Concepts in Engineering - Emphasis on Applications to Civil and Environmental Engineering, 2nd Edition, John Wiley & Sons, 2007.

S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107.
Prerequisites / NoticeBasic course on probability theory and statistics
701-1346-00LCarbon Mitigation Restricted registration - show details
Number of participants limited to 90.
W3 credits2GN. Gruber
AbstractFuture climate change can only kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations from guest speakers from industry and the public sector, and final presentations by the students.
ObjectiveThe goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.
ContentFrom the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.
Lecture notesNone
LiteratureWill be identified based on the chosen topic.
Prerequisites / NoticeExam: No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion.
363-0537-00LResource and Environmental EconomicsW3 credits2GL. Bretschger
AbstractRelationship between economy and environment, market failures, external effects and public goods, contingent valuation, internalisation of externalities, economics of non-renewable resources, economics of renewable resources, environmental cost-benefit analysis, sustainability economics, and international resource and environmental problems.
ObjectiveA successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analysis of renewable and non-renewable resources, including the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. to the problem of climate change.
ContentThe course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importace and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.
LiteraturePerman, R., Ma, Y., McGilvray, J, Common, M.: "Natural Resource & Environmental Economics", 4th edition, 2011, Harlow, UK: Pearson Education
363-0565-00LPrinciples of MacroeconomicsW3 credits2VJ.‑E. Sturm
AbstractThis course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?
ObjectiveThis lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.
ContentThis course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.
Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.
Lecture notesThe course webpage (to be found at Link) contains announcements, course information and lecture slides.
LiteratureThe set-up of the course will closely follow the book of
N. Gregory Mankiw and Mark P. Taylor (2020), Economics, Cengage Learning, Fifth Edition.

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.
101-0587-00LWorkshop on Sustainable Building Certification Restricted registration - show details
Number of participants limited to 25
W3 credits2GD. Kellenberger, G. Habert
AbstractBuilding labels are used to certify buildings and neighbourhoods in term of sustainability. Many different labels have been developed and can be used in Switzerland (LEED, DGNB, SNBS, Minergie, 2000-Watt-Sites). In this course the differences between the certification labels and its application on 3 emblematic case study buildings will be discussed.
ObjectiveAfter this course, the students are able to understand and use the different certification labels.
They have a clear view of what the labels take into consideration and what they don't.
ContentThree buildings case study will be presented.

Different certification schemes, including LEED (American standard), DGNB (German Standard with Swiss adaptation), Label SNBS, MINERGIE-ECO and 2000-Watt-Site (Swiss standards) will be presented and explained by experts.

After this overall general presentation and in order to have a closer look to specific aspects of sustainability, students will work in groups and assess during one or two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels.

This alternance of working session on one specific criteria for one specific building followed by a group presentation and discussion to compare labels is repeated for the different focus point (operation energy, mobility, daylight, indoor air quality).
Lecture notesThe slides from the presentations will be made available.
LiteratureAll documents for certification labels as well as detail plans of the buildings will be available for the students.
063-0611-00LThe Digital in Architecture II Information Restricted registration - show details
Prerequisite: Successful completion of the course "Structural Design VI" (063-0606-00L), "Design III" (052-0541/43/45) or "Das Digitale in der Architektur" (063-0610-00L).

ITA Pool Introduction Event: Information on courses offered by the Institute ITA: 7.9.20, 10-11 h, HIB Open Space.
W2 credits1V + 2UF. Gramazio, M. Kohler
AbstractSubject of the course is robotic fabrication in architecture. Through exercises, basic skills such as robotic control are being taught and applied to a small design and fabrication project. The course teaches how to develop a simple fabrication and material aware digital design process linked to a robotic fabrication procedure.
ObjectiveStudents learn to use industrial robots such as the Universal Robot UR5 and understand basic principles of robotic control. At the end of the course, students are able to translate simple design ideas into robotic fabrication processes, which they can run independently. Furthermore students deepen their skills in Python and Grasshopper, which they have acquired in the course “The Digital in Architecture” (FS18).
252-0839-00LInformatics Information Restricted registration - show details W2 credits2GL. E. Fässler, M. Dahinden
AbstractStudents learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, managing data with lists and tables and with relational databases, introduction to programming.
ObjectiveThe students learn to

- choose and apply appropriate tools from computer science,
- process and analyze real-world data from their subject of study,
- handle the complexity of real-world data.
Content1. Modeling and simulations
2. Data management with lists and tables
3. Data management with a relational database
4. Introduction to macro programming
5. Introduction to programming with Python
Lecture notesAll materials for the lecture are available at Link
Prerequisites / NoticeThis course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available.
101-0007-00LProject Management for Construction Projects Restricted registration - show details W4 credits3SB. T. Adey, J. J. Hoffman
AbstractThis course is designed to lay down the foundation of the different concepts, techniques, and tools for successful project management of construction projects.
ObjectiveThe goal is that at the end of this course students should have a good understanding of the different project management knowledge areas, the phases required for successful project management, and the role of a project manager. To demonstrate this, students will work in groups in different case studies to apply the concepts, tools and techniques presented in the class.

Two 3 to 4 hours sessions towards the end of the lecture series will introduce a practical project to allow the teams to demonstrate the tools and techniques learned during the semester.
The course will have a final quiz that will be graded.
ContentThe main content of the course is summarized in the following topics:
- Project and organization structures
- Project scheduling
- Resource management
- Project estimating
- Project financing
- Risk management
- Project Reporting
- Interpersonal skills
Lecture notesThe slides for the class will be available for download from Moodle at least one day before each class. Copies of all necessary documents will be distributed at appropriate times.
LiteratureRelevant readings will be recommended throughout the course (and made available to the students via Moodle).
Prerequisites / NoticeThe students will be randomly assigned to teams. Students will be graded as a team based on the final Project report and the in-class oral presentation of the Project Proposal as well as a final exam (50% exam and 50% project report and presentation). Homework will not be graded but your final report and presentation will consist mostly of your homework assignments consolidated and put in a report and presentation format.
102-0307-01LAdvanced Environmental, Social and Economic Assessments Restricted registration - show details
The combined course unit is only for Master students in Environmental Engineering. All other students enrol for one or both out of the single courses.
W5 credits4GA. E. Braunschweig, S. Pfister, R. Frischknecht
AbstractThis course deepens students' knowledge of environmental, economic, and social assessment methodologies and their various applications.
ObjectiveThis course has the aim of deepening students' knowledge of the environmental, economic and social assessment methodologies and their various applications.

In particular, students completing the course should have the
- ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- knowledge about the current state of the scientific discussion and new research developments
- ability to properly plan, conduct and interpret environmental assessment studies

In the course element "Implementation of Environmental and other Sustainability Goals", students will learn to
- describe key sustainability problems of the current economic system and measuring units.
- describe the management system of an organisation and how to develop a sustainability orientation
- discuss approaches to measure environmental performance of an organisation, including 'organisational LCA' (Ecobalance)
- explain the pros and cons of single score environmental assessment methods
- demonstrate life cycle costing
- interpret stakeholder relations of an organisation
- (if time allows) describe sustainable supply chain management and stakeholder management
ContentPart I (Advanced Environmental Assessments)
- Inventory database developments, transparency, data quality, data completeness, and data exchange formats, uncertainties
- Software tools (MFA, LCA)
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Impact assessment of waterborne chemical emissions, sum parameters, mixture toxicity
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Subjectivity in environmental assessments
- Multicriteria Decision Analysis
- Case Studies

Part II (Implementation of Environmental and other Sustainability Goals):
- Sustainability problems of the current economic system and its measuring units;
- The structure of a management system, and elements to integrate environmental management (ISO 14001) and social management (SA8000 as well as ISO 26000), especially into strategy development, planning, controlling and communication;
- Sustainability Opportunities and Innovation
- The concept of 'Continuous Improvement'
- Life Cycle Costing, Life Cycle Management
- environmental performance measurement of an organisation, including 'organisational LCA' (Ecobalance), based on practical examples of companies and new concepts
- single score env. assessment methods (Swiss ecopoints)
- stakeholder management and sustainability oriented communication
- an intro into sustainability issues of supply chain management
Students will get small excercises related to course issues.
Lecture notesPart I: Slides and background reading material will be available on lecture homepage
Part II: Documents will be available on Ilias
LiteratureWill be made available.
Prerequisites / NoticeThis course should only be elected by students of environmental engineering with a with a Module in Ecological Systems Design. All other students should take the individual courses in Advanced Environmental Assessment and/or Implementation of Environmental and other Sustainability goals (with or without exercise and lab).

Basic knowledge of environmental assessment tools is a prerequisite for this class. Students who have not yet had classwork in this topic are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. (2016). Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).
851-0589-00LTechnology and Innovation for DevelopmentW3 credits2VP. Aerni
AbstractTechnological change plays a crucial role in efforts to create a more sustainable future. In this context, policy decision makers must design rules that minimize its risks and maximize its benefits for society at large. The course discusses this challenge from an interdisciplinary perspective taking into account legal, economic, historical, development and environmental aspects..
Objective- to recognize the challenges and opportunities of technological change in terms of sustainable development
- to become familiar with policy instruments to promote innovation
- to improve understanding of political decision-making processes in the regulation of science & technology
- improved understanding of the role of science and technology in the context of human and societal development
ContentScience and Technology Policy is normally associated with the improvement of national competitiveness; yet, it is also an integral part of effective environmental and development policies.
The course will discuss the challenges and opportunities of technological change in terms of sustainable development and show how public policy on the national and the international level is responding to this change.

In this context, students are to become familiar with the basic principles of political economy and New Growth Theory and how such theories help explain political decisions as well as political outcomes in the area of Science, Technology and Innovation. State interventions are either designed to regulate (e.g. environmental regulations, anti-trust law) or facilitate (e.g. intellectual property rights protection, public investment in R&D and technical education, technology transfer) technological change. This will be illustrated by looking at different industries and different national systems of innovation. Subsequently the positive and negative consequences for society and the natural environment will be discussed from a short-term and a long-term perspective.
Lecture notesReader with issue-specific articles. E-version is partly available under
Link
LiteratureAerni, P. 2017. ‘Principled Embeddedness’: How Foreign Direct Investment May Contribute To Inclusive And Sustainable Growth In Developing Economies. ATDF Journal 9(1/2), 3-19
Aerni, P. 2016a. Coping with Migration-Induced Urban Growth: Addressing the Blind Spot of UN Habitat. Sustainability 8(800), doi:10.3390/su8080800
Aerni, P. 2016b. The importance of public-private partnerships in the provision of global public goods. An academic view. In: Swiss Investment for a Better World, Swiss Sustainable Finance.
Aerni, P., Gagalac, F., Scholderer, J. 2016. The role of biotechnology in combating climate change: A question of politics. Science and Public Policy (43): 13–28.
Aerni, P. 2015a. Entrepreneurial Rights as Human Rights. Banson, Cambridge (June 2015) (available online: Link)
Aerni, P. 2015b. The Sustainable Provision of Environmental Services: From Regulation to Innovation. Springer, Heidelberg.
Aerni, P. 2013. Resistance to agricultural biotechnology: the importance of distinguishing between weak and strong public attitudes. Biotechnology Journal 8 (10): 1129–1132.
Aerni, Philipp. 2007. Exploring the Linkages between Commerce, Higher Education and Human Development: A Historical Review. ATDF Journal 4(2): 35-47.
Aerni, Philipp. 2004. Risk, Regulation and Innovation: The Case of Aquaculture and Transgenic Fish. Aquatic Sciences 66: 327-341.
Arthur, Brian. 2009. The Nature of Technology. New York: Free Press.
Carr, N. 2008. The Big Switch. Rewiring the World from Edison to Google. W. W. Norton & Company, New York.
Desai. M. (2003) Public Goods: A Historical Perspective. In Kaul, I., Conceicao, P., Le Goulven, K. and Mendoza, R.U. eds., 2003. Providing global public goods: managing globalization. Oxford University Press.
Diamond, Jared. 1999. Guns, Germs and Steel. New York: Norton.
Fraiberg, S. 2017. Start-up nation: Studying transnational entrepreneurial practices in Israel’s start-up ecosystem. Journal of Business and Technical Communication, 31(3), 350-388.
Hahn, R. W. and Sunstein, C. 2005. The Precautionary Principle as a Basis for Decision Making. The Economist’s Voice 2(2): 1-9
Heal, J.. 1999. New Strategies for the Provision of Global Public Goods. In: Kaul, Inge, Grunberg, Isabelle, and Marc A. Stern (eds) Global Public Goods. International Cooperation in the 21th century. Published for the United Nations Development Program. New York, Oxford University Press: 220-239
Hidalgo, C. 2015. When information grows. Basic Books.
Jacobs, J. 1969. The Economy of Cities. Vintage Books.
Kaplan, R. S., Serafeim, G., Tugendhat, E. (2018). Inclusive Growth: Profitable Strategies for Tackling Poverty and Inequality. Harvard Business Review, 96(1), 127-133.
Malakoff, D. 2011. Are More People Necessarily a Problem? Science 29 (333): 544-546
Malerba, Franco, and Luigi Orsenigo. 2015 The evolution of the pharmaceutical industry. Business History 57.5 (2015): 664-687.
Mazzucato, M. (2016). From market fixing to market-creating: a new framework for innovation policy. Industry and Innovation, 23(2), 140-156.
Mokyr, J. (2016). A culture of growth: the origins of the modern economy. Princeton University Press.
Roa, C., Hamilton, R.S., Wenzl, P. and Powell, W., 2016. Plant Genetic Resources: Needs, Rights, and Opportunities. Trends in Plant Science, 21(8), pp.633-636.
Romer, Paul. 1994. New Goods, Old Theory and the Welfare Costs of Trade Restrictions. Journal of Development Economics 43 (1): 5-38.
Schumpeter, Joseph A. 1942. Capitalism, Socialism and Democracy. New York, Harper Collins Publishers.
The Economist. 2014. Biodiversity Report. September, 2013: 1-14
Wang, F. & Matsuoka, M. (2018) A new green revolution on the horizon. Nature Magazine 360: 563-4.
Ziegler, N., Gassmann, O. and Friesike, S. 2014. Why do firms give away their patents for free? World Patent Information 37: 19–25
.
Prerequisites / NoticeThe 2-hour course (5-7 p.m.) will be held as a series of lectures. The course materials will be available in form of an electronic Reader at the beginning of the semester.
The class will be taught in English.
Students will be asked to make a contribution in class choosing one out of three options:
(a) presentation in class (15 Minutes) based on a paper to be discussed on a particular day in class
(b) review paper based on a selected publication in the course material
(c) preparation of questions for a selected invited speaker, and subsequent submission of protocol about the content of the talk and the discussion

In addition, they will have to pass a written test at the end of the course in order to obtain 3 credit points in the ECTS System. In the final mark (a) will have a weight of 40% and (b) 60%.
  •  Page  1  of  2 Next page Last page     All