Search result: Catalogue data in Spring Semester 2018
Interdisciplinary Sciences Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() The Bachelor's programme in Interdisciplinary Sciences allows students to choose from any subject taught at a Bachelor level at ETH Zurich. In consultation with the Director of Studies of Interdisciplinary Sciences, every student must establish his/her own individual study programme at the beginning of the 2nd year. See the Programme Regulations 2010 for further details. | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
529-0058-00L | Analytical Chemistry II | W | 3 credits | 3G | D. Günther, T. Bucheli, M.‑O. Ebert, P. Lienemann, G. Schwarz | |
Abstract | Enhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included. | |||||
Objective | Use and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems. | |||||
Content | Combined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS. | |||||
Lecture notes | Script will be available | |||||
Literature | Literature will be within the script. | |||||
Prerequisites / Notice | Exercises for spectra interpretation are part of the lecture. In addition the lecture 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4th semester) is recommended. Prerequisite: 529-0051-00 "Analytische Chemie I" (3rd semester) | |||||
401-1662-10L | Introduction to Numerical Methods ![]() | W | 6 credits | 4G + 2U | V. C. Gradinaru | |
Abstract | This course gives an introduction to numerical methods, aimed at physics majors. It covers numerical linear algebra, quadrature as well as initial vaule problems. The focus is on the ability to apply the numerical methods. | |||||
Objective | Overview on the most important algorithms for the solution of the fundamental numerical problems in Physics and applications; overview on available software for the numerical solutions; ability to solve concrete problems ability to interpret numerical results | |||||
Content | Least squares (linear and non-linear), nonlinear equations, numerical quadrature, initial value problems. | |||||
Lecture notes | Notes, slides and other relevant materials will be available via the web page of the lecture. | |||||
Literature | Relevant materials will be available via the web page of the lecture. | |||||
Prerequisites / Notice | Prerequisite is familiarity with basic calculus (approximation theory and vector calculus: grad, div, curl) and linear algebra (Gauss-elimination, matrix decompositions and algorithms, determinant) | |||||
401-1152-02L | Linear Algebra II | W | 7 credits | 4V + 2U | M. Akveld | |
Abstract | Eigenvalues and eigenvectors, Jordan normal form, bilinear forms, euclidean and unitary vector spaces, selected applications. | |||||
Objective | Basic knowledge of the fundamentals of linear algebra. | |||||
529-0440-00L | Physical Electrochemistry and Electrocatalysis | W | 6 credits | 3G | T. Schmidt | |
Abstract | Fundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes and introduction into the technologies (e.g., fuel cell, electrolysis), electrochemical methods (e.g., voltammetry, impedance spectroscopy), mass transport. | |||||
Objective | Providing an overview and in-depth understanding of Fundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes (fuel cell, electrolysis), electrochemical methods and mass transport during electrochemical reactions. The students will learn about the importance of electrochemical kinetics and its relation to industrial electrochemical processes and in the energy seactor. | |||||
Content | Review of electrochemical thermodynamics, description electrochemical kinetics, Butler-Volmer equation, Tafel kinetics, simple electrochemical reactions, electron transfer, Marcus Theory, fundamentals of electrocatalysis, elementary reaction processes, rate-determining steps in electrochemical reactions, practical examples and applications specifically for electrochemical energy conversion processes, introduction to electrochemical methods, mass transport in electrochemical systems. Introduction to fuel cells and electrolysis | |||||
Lecture notes | Will be handed out during the Semester | |||||
Literature | Physical Electrochemistry, E. Gileadi, Wiley VCH Electrochemical Methods, A. Bard/L. Faulkner, Wiley-VCH Modern Electrochemistry 2A - Fundamentals of Electrodics, J. Bockris, A. Reddy, M. Gamboa-Aldeco, Kluwer Academic/Plenum Publishers | |||||
701-0423-00L | Chemistry of Aquatic Systems | W | 3 credits | 2G | L. Winkel | |
Abstract | This course gives an introduction to chemical processes in aquatic systems and shows applications to various systems. The following topics are treated: acid-base reactions and carbonate system, solubility of solids and weathering, redox reactions, complexation of metals, reactions at the solid/water interface, applications to lakes, rivers and groundwater. | |||||
Objective | Understanding of chemical processes in aquatic systems. Quantitative application of chemical equilibria to processes in natural waters. Evaluation of analytical data from aquatic systems. | |||||
Content | Introduction to the chemistry of aquatic systems. Regulation of the composition of natural waters by chemical, geochemical and biological processes. Quantitative application of chemical equilibria to processes in natural waters. The following topics are treated: acid-base reactions, carbonate system; solubility of solid phases and weathering; complexation of metals and metal cycling in natural waters; redox reactions; reactions at the interface solid phase-water; applications to lakes, rivers, groundwater. | |||||
Lecture notes | Script is distributed. | |||||
Literature | Sigg, L., Stumm, W., Aquatische Chemie, 5. Aufl., vdf/UTB, Zürich, 2011. | |||||
701-0401-00L | Hydrosphere | W | 3 credits | 2V | R. Kipfer, W. Aeschbach | |
Abstract | Qualitative and quantitative understanding of the physical processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed. | |||||
Objective | Qualitative and quantitative understanding of the physical processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed. | |||||
Content | Topics of the course. Physical properties of water (i.e. density and equation of state) - global water resources Exchange at boundaries - energy (thermal & kinetic), gas exchange Mixing and transport processes in open waters - vertical stratification, large scale transport - turbulence and mixing - mixing and exchange processes in rivers Groundwater and its dynamics - ground water as part of the terrestrial water cycle - ground water hydraulics, Darcy's law - aquifers and their properties - hydrochemistry and tracer - ground water use Case studies - 1. Water as resource, 2. Water and climate | |||||
Lecture notes | In addition to the suggested literature handouts are distributed. | |||||
Literature | Suggested literature. a) Park, Ch., 2001, The Environment, Routledge, 2001 b) Price, M., 1996. Introducing groundwater. Chapman & Hall, London u.a. | |||||
Prerequisites / Notice | The case studies and the analysis of the questions and problems are integral part of the course. |
Page 1 of 1