Suchergebnis: Katalogdaten im Herbstsemester 2017

MAS in Medizinphysik Information
Fachrichtung: Allg. Medizinphysik und Biomedizinisches Ingenieurwesen
Vertiefung Neuroinformatics
Wahlfächer
NummerTitelTypECTSUmfangDozierende
227-1033-00LNeuromorphic Engineering I Information Belegung eingeschränkt - Details anzeigen
Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots.
Preference is given to students that require this class as part of their major.
W6 KP2V + 3UT. Delbrück, G. Indiveri, S.‑C. Liu
KurzbeschreibungThis course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.
LernzielUnderstanding of the characteristics of neuromorphic circuit elements.
InhaltNeuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.
LiteraturS.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.
Voraussetzungen / BesonderesParticular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.
376-1795-00LAdvanced Course in Neurobiology I (Functional Anatomy of the Rodent Brain) (University of Zurich) Information
Findet dieses Semester nicht statt.
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: SPV0Y009

Beachten Sie die Einschreibungstermine an der UZH: Link
W2 KP2VJ.‑M. Fritschy, H. U. Zeilhofer
KurzbeschreibungThe goal of this Advanced Course in Neurobiology is to provide students with a broader knowledge in several important areas of neurobiology. The course consists of four parts: Part I deals with various topics in developmental neurobiology. Part II is devoted to aspects of signal transduction. Part III focuses on synaptic transmission. Part IV gives deeper insights into systems neuroscience.
LernzielThis credit point course is designed for doctoral students who have successfully completed the Introductory Course in Neuroscience at the Neuroscience Center Zürich. The goal is to provide students with a broader and deeper knowledge in several important areas of neurobiology.
Voraussetzungen / BesonderesFür Doktorierende des Zentrums für Neurowissenschaften Zürich. Nicht für Master-Studierende geeignet.
376-1791-00LIntroductory Course in Neuroscience I (University of Zurich) Information
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: SPV0Y005

Beachten Sie die Einschreibungstermine an der UZH: Link
W2 KP2VW. Knecht, J.‑M. Fritschy
KurzbeschreibungThe course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.
LernzielThe course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.
Inhalt1) Human Neuroanatomy I&II
2) Comparative Neuroanatomy
3) Development I&II
4) Membran and Action Potential
5) Synaptic Transmission & Plasticity I&II
6) Glia and Blodd-Brain-Barrier
7) Somatosensory and Motor System
8) Visual System
9) Auditory System
10) Circuits underlying Emotion
11) Modeling of Neural Circuits
Voraussetzungen / BesonderesFor doctoral students of the Neuroscience Center Zurich (ZNZ).
  •  Seite  1  von  1