Suchergebnis: Katalogdaten im Herbstsemester 2017

Mathematik Master Information
Wahlfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Wahlfächer aus Bereichen der reinen Mathematik
Auswahl: Algebra, Topologie, diskrete Mathematik, Logik
NummerTitelTypECTSUmfangDozierende
401-3034-00LAxiomatische MengenlehreW8 KP3V + 1UL. Halbeisen
KurzbeschreibungEs werden ausführlich die Axiome der Mengenlehre besprochen und parallel dazu wird die Theorie der Ordinal- und Kardinalzahlen aufgebaut. Zudem werden Ultrafilter untersucht und es wird das Martinaxiom eingeführt.
Lernziel
InhaltEs werden ausführlich die Axiome der Mengenlehre besprochen und parallel dazu wird die Theorie der Ordinal- und Kardinalzahlen aufgebaut. Insbesondere wird die Kontinuumshypothese behandelt und einige Konsequenzen besprochen. Zudem werden Ultrafilter untersucht und die Existenz gewisser Ultrafilter diskutiert. Im letzten Teil der Vorlesung wird das Martin-Axiom eingeführt, mit dessen Hilfe sich interessante Konsistenzresultate in Topologie und Masstheorie, sowie Resultate über Ultrafilter, beweisen lassen.
SkriptIch werde mich weitgehend an mein Buch "Combinatorial Set Theory" (2nd ed., erscheint im Herbst 2017) halten.
Literatur"Combinatorial Set Theory: with a gentle introduction to forcing" (Springer-Verlag 2012)

Link
401-3118-67LClassical Modular FormsW8 KP4GI. N. Petrow
Kurzbeschreibung
Lernziel
401-3129-67LDifferential Galois TheoryW4 KP2VP. S. Jossen
KurzbeschreibungAlgebraic theory of linear differential equations, Picard-Vessiot theory, Differential Galois groups, local theory of differential equations, the Frobenius method, Newton polygons, Connections and local systems, Riemann-Hilbert correspondence on ℙ¹.
LernzielWe introduce differential Galois theory and mathematical concepts surrounding it. We formulate and prove an important case of the Riemann-Hilbert correspondence.
InhaltWe study linear differential equations from an algebraic perspective, introducing differential rings, fields and differential modules (so-called Picard-Vessiot theory), and very soon the Galois group of a differential equation. We relate then the algebraic theory with the analytic theory, which leads us to the classical Riemann-Hilbert correspondence. In particular we will prove that differential equations on the complex projective line ℙ¹ with regular singularities in a finite set S correspond to representations of the fundamental group of ℙ¹∖S. If time permits, we have a look at differential equations in positive characteristic.
LiteraturM. van der Put and M. F. Singer, Galois theory of linear differential equations, Grundlehren der Math. Wiss. Vol 328, Springer 2003
401-3203-67LSmall Cancellation TheoryW4 KP2VD. Gruber
KurzbeschreibungSmall cancellation theory studies groups given by presentations in which defining relations have small common subwords. By translating group theoretic questions into geometric objects and applying concepts of negative curvature, it produces a variety of theorems on infinite groups. We will give an introduction to the theory, discuss important results, and touch on more recent developments.
LernzielFamiliarity with the fundamental methods of small cancellation theory and its main applications; ability to apply the methods to create new examples of infinite groups with prescribed properties; basic understanding of connections with Gromov hyperbolicity.
InhaltWe plan to cover a selection (depending on time) of the following topics:
- Methods of classical small cancellation theory (e.g. van Kampen diagrams, van Kampen's lemma, Greendlinger's lemma)
- Fundamental properties of small cancellation groups (e.g. Torsion Theorem, asphericity, linear/quadratic Dehn function)
- Connections with algorithmic decision problems in groups (e.g. Dehn's algorithm for solving the word problem in surface groups, solvability of word and conjugacy problems in small cancellation groups)
- Easy examples of small cancellation monsters (e.g. Pride's example, Rips construction)
- Graphical generalization of small cancellation theory and applications (e.g. groups with expander graphs embedded in their Cayley graphs)
- Connections with Gromov hyperbolicity
LiteraturV. Guirardel, Geometric small cancellation. Geometric group theory, 55-90, IAS/Park City Math. Ser. 21, Amer. Math. Soc., Providence, RI, 2014.

R. C. Lyndon, P. E. Schupp, Combinatorial group theory. Reprint of the 1977 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. ISBN: 3-540-41158-5.

A. Yu. Olshanskii, Geometry of defining relations in groups. Translated from the 1989 Russian original by Yu. A. Bakhturin. Mathematics and its Applications (Soviet Series), 70. Kluwer Academic Publishers Group, Dordrecht, 1991. ISBN: 0-7923-1394-1.

R. Strebel, Appendix. Small cancellation groups. In: Sur les groupes hyperbolic d'après Mikhael Gromov (Bern, 1988), 227-273, Progr. Math. 83, Birkhäuser Boston, Boston, MA, 1990.
Voraussetzungen / BesonderesFamiliarity with very basic notions of group theory, definitions of free groups, group presentations, and graphs.
401-3177-67LIntroduction to Vertex Operator Algebras Information W4 KP2VC. A. Keller
KurzbeschreibungA first introduction to the theory of vertex operator algebras.
LernzielUnderstand the basic concepts of vertex operator algebras and their most important examples.
InhaltTentative plan:

1) Formal power series, local fields
2) Vertex Algebras
3) Conformal symmetry
4) Vertex Operator Algebras
5) Correlation functions
6) VOAs from lattices
7) Connection to modular forms: Zhu's Theorem
8) Connection to Monstrous Moonshine
LiteraturVictor Kac: Vertex Algebras for Beginners

James Lepowksy, Haisheng Li: Introduction to Vertex Operator Algebras and Their Representations
Voraussetzungen / BesonderesBasic algebra and linear algebra. Some background in quantum mechanics is helpful, but not necessary.
401-3059-00LKombinatorik IIW4 KP2GN. Hungerbühler
KurzbeschreibungDer Kurs Kombinatorik I und II ist eine Einfuehrung in die abzaehlende Kombinatorik.
LernzielDie Studierenden sind in der Lage, kombinatorische Probleme einzuordnen und die adaequaten Techniken zu deren Loesung anzuwenden.
InhaltInhalt der Vorlesungen Kombinatorik I und II: Kongruenztransformationen der Ebene, Symmetriegruppen von geometrischen Figuren, Eulersche Funktion, Cayley-Graphen, formale Potenzreihen, Permutationsgruppen, Zyklen, Lemma von Burnside, Zyklenzeiger, Saetze von Polya, Anwendung auf die Graphentheorie und isomere Molekuele.
  •  Seite  1  von  1