Search result: Catalogue data in Autumn Semester 2017

Interdisciplinary Sciences Bachelor Information
Physical-Chemical Direction
3. Semester (Physical-Chemical Direction)
Electives
For the Bachelor in Interdisciplinary Sciences students can in principle choose from all subjects taught at the Bachelor level at ETH Zurich.



At the beginning of the 2. year an individual study programme is established for every student in discussion with the Director of Studies in interdisciplinary sciences. For details see Programme Regulations 2010.
NumberTitleTypeECTSHoursLecturers
252-0027-00LIntroduction to Programming Information W7 credits4V + 2UT. Gross
AbstractIntroduction to fundamental concepts of modern programming and operational skills for developing high-quality programs, including large programs as in industry. The course introduces software engineering principles with an object-oriented approach based.
ObjectiveMany people can write programs. The "Introduction to Programming" course goes beyond that basic goal: it teaches the fundamental concepts and skills necessary to perform programming at a professional level. As a result of successfully completing the course, students master the fundamental control structures, data structures, reasoning patterns and programming language mechanisms characterizing modern programming, as well as the fundamental rules of producing high-quality software. They have the necessary programming background for later courses introducing programming skills in specialized application areas.
ContentBasics of object-oriented programming. Objects and classes. Pre- and postconditions, class invariants, Design by Contract. Fundamental control structures. Assignment and References. Basic hardware concepts. Fundamental data structures and algorithms. Recursion. Inheritance and interfaces, introduction to event-driven design and concurrent programming. Basic concepts of Software Engineering such as the software process, specification and documentation, reuse and quality assurance.
Lecture notesThe lecture slides are available for download on the course page.
LiteratureSee the course page for up-to-date information.
Prerequisites / NoticeThere are no special prerequisites. Students are expected to enroll in the other courses offered to first-year students of computer science.
252-0847-00LComputer Science Information W5 credits2V + 2UB. Gärtner
AbstractThis lecture is an introduction to programming based on the language C++. We cover fundamental types, control statements, functions, arrays, and classes. The concepts will be motivated and illustrated through algorithms and applications.
ObjectiveThe goal of this lecture is an algorithmically oriented introduction to programming.
ContentThis lecture is an introduction to programming based on the language C++. We cover fundamental types, control statements, functions, arrays, and classes. The concepts will be motivated and illustrated through algorithms and applications.
Lecture notesLecture notes in English and Handouts in German will be distributed electronically along with the course.
LiteratureAndrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.

Stanley B. Lippman: C++ Primer, 3. Auflage, Addison-Wesley, 1998.

Bjarne Stroustrup: The C++ Programming Language, 3. Auflage, Addison-Wesley, 1997.

Doina Logofatu: Algorithmen und Problemlösungen mit C++, Vieweg, 2006.

Walter Savitch: Problem Solving with C++, Eighth Edition, Pearson, 2012
327-0103-00LIntroduction to Materials ScienceW3 credits3GM. Niederberger, L. Heyderman, N. Spencer, P. Uggowitzer
AbstractFundamental knowledge and understanding of the atomistic and macroscopic concepts of material science.
ObjectiveBasic concepts in materials science.
ContentContents:
Atomic structure
Atomic bonds
Crystalline structure, perfection - imperfection
Diffusion
Mechanical and thermal properties
Phase diagrams
Kinetics
Structural materials
Electric, magnetic and optical properties of materials
Surfaces
Materials selection criteria
Lecture notesLink
LiteratureJames F. Shackelford
Introduction to Materials Science for Engineers
5th Ed., Prentice Hall, New Jersey, 2000
327-0301-00LMaterials Science IW3 credits3GJ. F. Löffler, R. Schäublin, A. R. Studart, P. Uggowitzer
AbstractBasic concepts of metal physics, ceramics, polymers and their technology.
ObjectiveBased on the lecture 'Introduction to Materials Science' this lecture aims to give a detailed understanding of important aspects of materials science, with special emphasis on metallic and ceramic materials.
ContentThermodynamics and phase diagrams, crystal interfaces and microstructure, diffusional transformations in solids, and diffusionless transformations will be presented for metallic alloys.
The basics of the ionic and covalent chemical bonds, the bond energy, the crystalline structure, four important structural ceramics, and the properties of glasses and glass ceramics will be presented for ceramic materials.
Lecture notesFor metals see:
Link

For ceramics see:
Link
LiteratureMetals:
D. A. Porter, K. E. Easterling
Phase Transformations in Metals and Alloys - Second Edition
ISBN : 0-7487-5741-4
Nelson Thornes

Ceramics:
- Munz, D.; Fett, T: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection,
- Askeland & Phulé: Science and Engineering of Materials, 2003
- diverse CEN ISO Standards given in the slides
- Barsoum MW: Fundamentals of Ceramics:
- Chiang, Y.M.; Dunbar, B.; Kingery, W.D; Physical Ceramics, Principles für Ceramic Science and Engineering. Wiley , 1997
- Hannik, Kelly, Muddle: Transformation Toughening in Zirconia Containing Ceramics, J Am Ceram Soc 83 [3] 461-87 (2000)
- "High-Tech Ceramics: viewpoints and perspectives", ed G. Kostorz, Academic Press, 1989. Chapter 5, 59-101.


- "Brevieral Ceramics" published by the "Verband der Keramischen Industrie e.V.", ISBN 3-924158-77-0. partly its contents may be found in the internet @ Link or on our homepage

- Silicon-Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003,

- Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 3. Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986

- Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie, The Journal of Physical Chemistry, 1978

- Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975, Springer

- Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992

- "Formation of beta -Si sub 3 N sub 4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si sub 3 N sub 4 , AlN, Al sub 2 O sub 3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980.

- Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, Springer-Verlag, 1984, pp. 329, 1984 9.
Prerequisites / Notice- In the first part of the lecture the bases are obtained for metals. In the second part the basics of cermics will be presented.
- One part of the lecture will be taught in English, but most of it in German.
401-2303-00LComplex Analysis Information W6 credits3V + 2UR. Pandharipande
AbstractComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.
ObjectiveWorking Knowledge with functions of one complex variables; in particular applications of the residue theorem
LiteratureTh. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

R.Remmert: Theory of Complex Functions. Springer Verlag
401-2333-00LMethods of Mathematical Physics IW6 credits3V + 2UH. Knörrer
AbstractFourier series. Linear partial differential equations of mathematical physics. Fourier transform. Special functions and eigenfunction expansions. Distributions. Selected problems from quantum mechanics.
Objective
Prerequisites / NoticeDie Einschreibung in die Übungsgruppen erfolgt online. Melden Sie sich im Laufe der ersten Semesterwoche unter echo.ethz.ch mit Ihrem ETH Account an. Der Übungsbetrieb beginnt in der zweiten Semesterwoche.
402-0205-00LQuantum Mechanics I Information W10 credits3V + 2UC. Anastasiou
AbstractIntroduction to non-relativistic single-particle quantum mechanics. In particular, the basic concepts of quantum mechanics, such as the quantisation of classical systems, wave functions and the description of observables as operators on a Hilbert space, and the formulation of symmetries will be discussed. Basic phenomena will be analysed and illustrated by generic examples.
ObjectiveIntroduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, perturbation theory) and generic examples and applications (bound states, tunneling, scattering states, in one- and three-dimensional settings). Ability to solve simple problems.
ContentKeywords: Schrödinger equation, basic formalism of quantum mechanics (states, operators, commutators, measuring process), symmetries (translations, rotations), quantum mechanics in one dimension, spherically symmetric problems in three dimensions, scattering theory, perturbation theory, variational techniques, spin, addition of angular momenta, relation between QM and classical physics.
LiteratureJ.J. Sakurai: Modern Quantum Mechanics
Lectures on Quantum Mechanics, S. Weinberg
402-0255-00LIntroduction to Solid State PhysicsW10 credits3V + 2UK. Ensslin
AbstractThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity.
ObjectiveIntroduction to Solid State Physics.
ContentThe course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity.
Lecture notesA Manuscript is distributed.
LiteratureIbach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie
Prerequisites / NoticeVoraussetzungen: Physik I, II, III wünschenswert
402-0263-00LAstrophysics I Information W10 credits3V + 2UH. M. Schmid
AbstractThis introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
ObjectiveThe course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.
402-0595-00LSemiconductor Nanostructures Information W6 credits2V + 1UT. M. Ihn
AbstractThe course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.
ObjectiveAt the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:
1. The integer quantum Hall effect
2. Conductance quantization in quantum point contacts
3. the Aharonov-Bohm effect
4. Coulomb blockade in quantum dots
Content1. Introduction and overview
2. Semiconductor crystals: Fabrication and band structures
3. k.p-theory, effective mass
4. Envelope functions and effective mass approximation, heterostructures and band engineering
5. Fabrication of semiconductor nanostructures
6. Elektrostatics and quantum mechanics of semiconductor nanostructures
7. Heterostructures and two-dimensional electron gases
8. Drude Transport
9. Electron transport in quantum point contacts; Landauer-Büttiker description
10. Ballistic transport experiments
11. Interference effects in Aharonov-Bohm rings
12. Electron in a magnetic field, Shubnikov-de Haas effect
13. Integer quantum Hall effect
14. Coulomb blockade and quantum dots
Lecture notesT. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.
LiteratureIn addition to the lecture notes, the following supplementary books can be recommended:
1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)
2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997)
3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997)
4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003)
5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991)
6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)
Prerequisites / NoticeThe lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is recommended. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.
402-2203-01LClassical MechanicsW7 credits4V + 2UN. Beisert
AbstractA conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation.
Objective
551-0015-00LBiology IW2 credits2VR. Glockshuber, E. Hafen
AbstractThe lecture Biology I, together with the lecture Biology II in the following summer semester, is a basic, introductory course into Biology for Students of Materials Sciences and other students with biology as subsidiary subject.
ObjectiveThe goal of this course is to give the students a basic understanding of the molecules that build a cell and make it function, and the basic principles of metabolism and molecular genetics.
ContentDie folgenden Kapitelnummern beziehen sich auf das der Vorlesung zugrundeliegende Lehrbuch "Biology" (Campbell & Rees, 10th edition, 2015)
Kapitel 1-4 des Lehrbuchs werden als Grundwissen vorausgesetzt

1. Aufbau der Zelle

Kapitel 5: Struktur und Funktion biologischer Makromoleküle
Kapitel 6: Eine Tour durch die Zelle
Kaptiel 7: Membranstruktur und-funktion
Kapitel 8: Einführung in den Stoffwechsel
Kapitel 9: Zelluläre Atmung und Speicherung chemischer Energie
Kapitel 10: Photosynthese
Kapitel 12: Der Zellzyklus
Kapitel 17: Vom Gen zum Protein

2. Allgemeine Genetik

Kapitel 13: Meiose und Reproduktionszyklen
Kapitel 14: Mendel'sche Genetik
Kapitel 15: Die chromosomale Basis der Vererbung
Kapitel 16: Die molekulare Grundlage der Vererbung
Kapitel 18: Genetik von Bakterien und Viren
Kapitel 46: Tierische Reproduktion

Grundlagen des Stoffwechsels und eines Überblicks über molekulare Genetik
Lecture notesDer Vorlesungsstoff ist sehr nahe am Lehrbuch gehalten, Skripte werden ggf. durch die Dozenten zur Verfügung gestellt.
LiteratureDas folgende Lehrbuch ist Grundlage für die Vorlesungen Biologie I und II:

„Biology“, Campbell and Rees, 10th Edition, 2015, Pearson/Benjamin Cummings, ISBN 978-3-8632-6725-4
Prerequisites / NoticeZur Vorlesung Biologie I gibt es während der Prüfungssessionen eine einstündige, schriftliche Prüfung. Die Vorlesung Biologie II wird separat geprüft.
529-0051-00LAnalytical Chemistry IW3 credits3GD. Günther, M.‑O. Ebert, G. Schwarz, R. Zenobi
AbstractIntroduction into the most important spectroscopical methods and their applications to gain structural information.
ObjectiveKnowledge about the necessary theoretical background of spectroscopical methods and their practical applications
ContentApplication oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods:
Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements.
NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling.
IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy.
UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD).
Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation.
Lecture notesScript will be for the production price
Literature- R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998;
- D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996;
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995
- E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001-
Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1.
Prerequisites / NoticeExcercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended.
551-0105-00LFundamentals of Biology IAW5 credits5GM. Aebi, E. Hafen, M. Peter
AbstractThe course provides an introduction to the basics of molecular- and cell biology and genetics.
ObjectiveIntroduction to modern biology and to principal biological concepts.
ContentThe course is divided into several chapters:
1. Basic principles of Evolution.
2. Chemistry of Life: Water; Carbon and molecular diversity; biomolecules
3. The cell: structure; membrane structure and function, cell cycle
4. Metabolism: Respiration; Photosynthesis; Fermentation
5. Inheritance: meiosis and sexual reproduction; Mendelian genetics, chromosomal basis of inheritance, molecular basis of inheritance, from gene to protein, regulation of gene expression; genomes and their evolution
Lecture notesNone.
LiteratureThe text-book "Biology" (Campbell, Reece) (10th edition) is the basis of the course.
The structure of the course is largely identical with that of the text-book.
Prerequisites / NoticeCertain sections of the text-book must be studied by self-instruction.
529-0121-00LInorganic Chemistry I Information W3 credits2V + 1UA. Mezzetti
AbstractComplexes of the transition metals: structure, bonding, spectroscopic properties, and synthesis.
ObjectiveIntroduction to the binding theory in complexes of the transition metals. Interpretation of structure, bonding, and spectroscopic properties. General synthetic strategies.
ContentThe chemical bond (overview). Symmetry and group theory. The chemical bond of coordination compunds (Valence Bond Theory, Crystal Field Theory, Molecular Orbital Theory (sigma- and pi-bonding). pi-Accepting ligands (CO, NO, olefins, dioxygen, dihydrogen, phosphines and phosphites). Electronic spectra of coordination compounds (Tanabe-Sugano diagrams). Coordination numbers and isomers in complexes. Dynamic phenomena (stereochemical nonrigidity). Complexes and kinetics.
Lecture notesCan be bought at the HCI-shop
Literature- J. E. Huheey: Anorganische Chemie, Prinzipien von Struktur und Reaktivität, Walter de Gruyter, Berlin, 3. Auflage, 2003.
529-0221-00LOrganic Chemistry IW3 credits2V + 1UE. M. Carreira, J. W. Bode
AbstractChemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.
ObjectiveAcquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids and carboxylic acid derivatives, as well as eliminations and fragmentations. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class.
ContentChemical reactivity and classes of compounds. Eliminations, fragmentations, chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds, reactions with phosphorus and sulfur ylides; reactions of enolates as nucleophiles) and of carboxylic acid derivatives. Aldol reactions.
Lecture notesA pdf file of the printed lecture notes is provided online. Supplementary material may be provided online.
LiteratureNo set textbooks. Optional literature will be proposed at the beginning of the class and in the lecture notes.
701-0023-00LAtmosphere Information W3 credits2VE. Fischer, T. Peter
AbstractBasic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.
ObjectiveUnderstanding of basic physical and chemical processes in the atmosphere. Understanding of mechanisms of and interactions between: weather - climate, atmosphere - ocean - continents, troposhere - stratosphere. Understanding of environmentally relevant structures and processes on vastly differing scales. Basis for the modelling of complex interrelations in the atmospehre.
ContentBasic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.
Lecture notesWritten information will be supplied.
Literature- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
701-0245-00LIntroduction to Evolutionary BiologyW2 credits2VG. Velicer, S. Wielgoss
AbstractThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions.
ObjectiveThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences.
ContentTopics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection.
LiteratureTextbook:
Evolutionary Analysis
Scott Freeman and Jon Herron
5th Edition, English.
Prerequisites / NoticeThe exam is based on lecture and textbook.
701-0401-00LHydrosphere
Does not take place this semester.
W3 credits2VR. Kipfer, C. Roques
AbstractQualitative and quantitative understanding of the physical processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed.
ObjectiveQualitative and quantitative understanding of the physical processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed.
ContentTopics of the course.
Physical properties of water (i.e. density and equation of state)
- global water resources
Exchange at boundaries
- energy (thermal & kinetic), gas exchange
Mixing and transport processes in open waters
- vertical stratification, large scale transport
- turbulence and mixing
- mixing and exchange processes in rivers
Groundwater and its dynamics
- ground water as part of the terrestrial water cycle
- ground water hydraulics, Darcy's law
- aquifers and their properties
- hydrochemistry and tracer
- ground water use
Case studies
- 1. Water as resource, 2. Water and climate
Lecture notesIn addition to the suggested literature handouts are distributed.
LiteratureSuggested literature.
a) Park, Ch., 2001, The Environment, Routledge, 2001
b) Price, M., 1996. Introducing groundwater. Chapman & Hall, London u.a.
Prerequisites / NoticeThe case studies and the analysis of the questions and problems are integral part of the course.
701-0423-00LChemistry of Aquatic Systems
Does not take place this semester.
W3 credits2GL. Winkel
AbstractThis course gives an introduction to chemical processes in aquatic systems and shows applications to various systems. The following topics are treated: acid-base reactions and carbonate system, solubility of solids and weathering, redox reactions, complexation of metals, reactions at the solid/water interface, applications to lakes, rivers and groundwater.
ObjectiveUnderstanding of chemical processes in aquatic systems. Quantitative application of chemical equilibria to processes in natural waters. Evaluation of analytical data from aquatic systems.
ContentIntroduction to the chemistry of aquatic systems. Regulation of the composition of natural waters by chemical, geochemical and biological processes. Quantitative application of chemical equilibria to processes in natural waters. The following topics are treated: acid-base reactions, carbonate system; solubility of solid phases and weathering; complexation of metals and metal cycling in natural waters; redox reactions; reactions at the interface solid phase-water; applications to lakes, rivers, groundwater.
Lecture notesScript is distributed.
LiteratureSigg, L., Stumm, W., Aquatische Chemie, 5. Aufl., vdf/UTB, Zürich, 2011.
  •  Page  1  of  2 Next page Last page     All