Suchergebnis: Katalogdaten im Herbstsemester 2017

Maschineningenieurwissenschaften Bachelor Information
1. Semester
Die Anmeldung für die Übungsstunden erfolgt über die Applikation Link mit Ihrem nETHz Login (Benutzername, Passwort).
Obligatorische Fächer: Basisprüfung
NummerTitelTypECTSUmfangDozierende
401-0261-G0LAnalysis I Information O8 KP5V + 3UA. Steiger
KurzbeschreibungDifferential- und Integralrechnung von Funktionen einer und mehrerer Variablen; Vektoranalysis; gewöhnliche Differentialgleichungen erster und höherer Ordnung, Differentialgleichungssysteme; Potenzreihen. In jedem Teilbereich eine grosse Anzahl von Anwendungsbeispielen aus Mechanik, Physik und anderen Lehrgebieten des Ingenieurstudiums.
LernzielEinführung in die mathematischen Grundlagen der Ingenieurwissenschaften, soweit sie die Differential- und Integralrechnung betreffen.
LiteraturU. Stammbach: Analysis I/II, Teil A, B, C und Aufgabensammlung

Die Vorlesung folgt dem Skript von Prof. U. Stammbach. Die vier Bände sind im Gesamtpaket zum Spezialpreis von CHF 75.- nur im ETH Store erhältlich und sehr zu empfehlen. Es findet kein Hörsaalverkauf statt.
Voraussetzungen / BesonderesDie Übungsaufgaben (inkl. Multiple Choice) sind ein wichtiger Bestandteil der Lehrveranstaltung. Es wird erwartet, dass Sie mindestens 75% der wöchentlichen Serien bearbeiten und zur Korrektur einreichen.
401-0171-00LLineare Algebra IO3 KP2V + 1UN. Hungerbühler
KurzbeschreibungDie Lineare Algebra ist ein unverzichtbares Werkzeug der Ingenieurmathematik. Die Vorlesung bietet einen Einstieg in die Theorie mit zahlreichen Anwendungen. Die erlernten Begriffe werden in den begleitenden Übungen gefestigt. Die Vorlesung wird als Lineare Algebra II weitergeführt.
LernzielDie Studierenden sind nach Absolvierung des Kurses in der Lage, lineare Strukturen zu erkennen und entsprechende Probleme der Theorie und der Praxis zu lösen.
Inhalt## Übersicht ##

Lineare Gleichungssysteme, Gaußscher Algorithmus, Lösungsraum, Matrizen, LR-Zerlegung, Determinanten, Struktur von Vektorräumen, normierte Vektorräume, Skalarprodukt, Ausgleichsrechnung (Methode der kleinsten Quadrate), QR-Zerlegung, Einführung in MATLAB, Anwendungen

## Semesterverlauf (ohne Gewähr) ##
### Vorlesung 1 ###
- Einführung und Überblick, kurze Geschichte der Linearen Algebra
- Grundfragen an ein LGS
- Lösungsmenge eines LGS
- Äquivalente LGS
- Äquivalenzumformungen bei LGS
- Dreiecksform und Rückwärtseinsetzen
- Grundidee des Gaussschen Eliminationsverfahrens
### Vorlesung 2 ###
- Schreibweisen für LGS
- erweiterte Matrix eines LGS
- Matrixschreibweise
- elementare Zeilenumformungen bei Matrizen
- Gausssches Eliminationsverfahren
### Vorlesung 3 ###
- Zeilenstufenform
- Pivots
- freie Parameter
- Verträglichkeitsbedingungen
- geometrische Interpretation von LGS
- Hessesche Normalform
### Vorlesung 4 ###
- Rang
- Sätze über den Rang und die Lösbarkeit von LGS
- Eindeutigkeit der Lösung
- homogene LGS (HLGS)
- Sätze über HLGS
- Matrizen
- spezielle Matrizen
- transponierte Matrix
- (anti-)symmetrische Matrizen
- Operationen mit Matrizen
### Vorlesung 5 ###
- Einsteinsche Summenkonvention
- Rechenregeln für Matrizen
- Kronecker-Symbol
- Spalten- und Zeilenstruktur und Sätze dazu
- Transpositionsregeln
### Vorlesung 6 ###
- inverse Matrix
- singuläre und reguläre Matrizen
- Gauss-Jordan-Algorithmus
- Sätze zur inversen Matrix
- Beziehung zu LGS
- orthogonale Matrizen
- Givens-Rotation
- Householder-Matrix
### Vorlesung 7 ###
- geometrische Interpretation orthogonaler Matrizen
- Isometrien
- Drehungen und Spiegelungen in der Ebene
- LR-Zerlegung
### Vorlesung 8 ###
- Anwendungen der LR-Zerlegung
- Permutationsmatrizen
- LR-Zerlegung mit Vertauschungen
- Determinanten
- Regel von Sarrus
- Minoren
- Kofaktoren
- Adjunkte
- Entwicklungssatz für Determinanten
### Vorlesung 9 ###
- Sätze zu Determinanten
- Allgemeiner Entwicklungssatz
- Produktsatz für Determinanten
- Blocksatz für Determinanten
- Determinantenberechnung via LR-Zerlegung
- Determinante und Rang
### Vorlesung 10 ###
- Determinanten, Rang und LGS
- Adjunkte und Inverse
- Vektorräume (VR)
- Nullvektor
- komplexe VR
- Beispiele von VR
- Sätze über VR
### Vorlesung 11 ###
- VR von Funktionen
- Unterräume (UR)
### Vorlesung 12 ###
- Weitere Beispiele von VR und UR
- Sätze über UR
- Beziehung zu LGS
- Linearkombinationen (LK)
- aufgespannte UR
- Erzeugendensysteme
- (un-)endlichdimensionale VR
- lineare (Un-)Abhängigkeit
### Vorlesung 13 ###
- geometrische Interpretation von linearer (Un-)Abhängigkeit
- Basis eines VR
- Dimension
- Koordinaten
### Vorlesung 14 ###
- Beispiele zu Koordinaten
- Koordinatenvektor
- lineare Abbildungen
- (geometrische) Beispiele von linearen Abbildungen
- Projektion
- Sampling
- Interpolation
- affin-lineare Abbildungen
- Kontraktionen
- Bild einer linearen Abbildung
- Hutchinson-Operator
- Selbstähnlichkeit und Fraktale
- Barnselys Farn
Literatur* K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
* K. Meyberg / P. Vachenauer, Höhere Mathematik 1, Springer 2003
Voraussetzungen / BesonderesDer Besuch und die aktive Teilnahme in den Übungen sind Teil dieser Lehrveranstaltung. Es wird erwartet, dass die Studierenden 3/4 aller Übungsaufgaben sinnvoll bearbeiten und zur Kontrolle abgeben.
151-0501-00LMechanik 1: Kinematik und StatikO5 KP3V + 2UE. Mazza
KurzbeschreibungGrundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper; Kräfte, Reaktionsprinzip; Leistung
Statik: Kräftegruppen und Momente; Prinzip der virtuellen Leistungen, Ruhelage und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte; Parallele Kräfte und Schwerpunkt; Statik der Systeme; Fachwerke; Reibung; Seilstatik; Beanspruchung in Stabträgern.
LernzielVerständnis der Statik als mechanische Grundlage des Ingenieurwesens sowie ihre Anwendung auf einfache Probleme.
InhaltGrundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper, Translation, Rotation, Kreiselung, ebene Bewegung; Kräfte, Reaktionsprinzip, innere und äussere Kräfte, verteilte Flächen- und Raumkräfte; Leistung

Statik: Aequivalenz und Reduktion von Kräftegruppen; Ruhe und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte, Lager bei Balkenträgern und Wellen, Vorgehen zur Ermittlung der Lagerkräfte; Parallele Kräfte und Schwerpunkt; Statik der Systeme, Behandlung mit Hauptsatz, mit Prinzip der virtuellen Leistungen, statisch unbestimmte Systeme; Statisch bestimmte Fachwerke, ideale Fachwerke, Pendelstützen, Knotengleichgewicht, räumliche Fachwerke; Reibung, Haftreibung, Gleitreibung, Gelenk und Lagerreibung, Rollreibung; Seilstatik; Beanspruchung in Stabträgern, Querkraft, Normalkraft, Biege- und Torsionsmoment
SkriptÜbungsblätter
LiteraturSayir, M.B., Dual J., Kaufmann S., Mazza E., Ingenieurmechanik 1: Grundlagen und Statik, Springer
Voraussetzungen / BesonderesSchriftliche Sessionsprüfung in "Mechanik 1" und "Mechanik 2" für D-MAVT-Studierende, Bewegungswissenschaften-Studierende und alle anderen Studierenden, die "Mechanik 1" und "Mechanik 2" nehmen:

1. Teil: 20 Minuten: Keine Hilfsmittel
Gleich anschliessend:
2. Teil: 50 Minuten mit Hilfsmittel: Eine selbstverfasste Formelsammlung von 3 A4-Seiten. Kein Taschenrechner.

Prüfungsinformation für alle Studierende, die den Jahreskurs "Mechanik 1" und "Mechanik 2" belegen: Prüfung "Mechanik 1" in Deutsch: 1. Teil: 20 Min. Gleich anschliessend 2. Teil: 50 Min. Falls sich das Ergebnis der zwei Semester-Klausuren verbessernd auf die finale Note auswirkt, so zählen diese zu 30 % zum Schlussergebnis von "Mechanik 1". Die Jahreskursnote setzt sich zusammen aus 45 % "Mechanik 1" und 55 % "Mechanik 2".
151-0711-00LWerkstoffe und Fertigung IO4 KP4GK. Wegener
KurzbeschreibungDie Vorlesung behandelt den Aufbau und die Eigenschaften der metallischen Werkstoffe. Im Mittelpunkt stehen die Teilgebiete mikroskopische Struktur; thermisch aktivierte Vorgänge; Erstarrung; elastische, plastische Verformung, Kriechen. Generell nimmt die Vorlesung auch Bezug auf die Fabrikation, die Verarbeitung und die Anwendung der betreffenden Werkstoffe.
LernzielVerständnis der Grundlagen der metallischen Werkstoffe für Ingenieure, welche mit Werkstofffragen in Konstruktion und Fertigung konfrontiert werden.
InhaltDie Vorlesung behandelt den Aufbau und die Eigenschaften der metallischen Werkstoffe. Im Mittelpunkt stehen die Teilgebiete mikroskopische Struktur als Ideal- und Realstruktur, Legierungskunde, thermisch aktivierte Vorgänge wie z.B. Diffusion, Erholung und Rekristallisation, Erstarrung, elastische und plastische Verformung und Kriechen.
Generell nimmt die Vorlesung auch Bezug auf die Fabrikation, die Verarbeitung und die Anwendung der betreffenden Werkstoffe.
SkriptJa
151-0301-00LMaschinenelementeO2 KP1V + 1UM. Meboldt, Q. Lohmeyer
KurzbeschreibungVorstellung von Maschinenelementen und mechanischen Systemen als Grundlage für die Produktentwicklung. Diskussion von Fallbeispielen zu deren Anwendung in Produkten und Systemen.
LernzielDie Studierenden bekommen einen Überblick über die wichtigsten mechanischen Komponenten (Maschinenelemente), welche im Maschinenbau eingesetzt werden. Anhand von ausgewählten Beispielen wird aufgezeigt, wie diese zu funktionalen Teil- und Gesamtsystemen wie Maschinen, Werkzeugen oder Antrieben zusammengefügt werden können. Gleichzeitig wird ebenfalls die Problematik der Fertigung (fertigungsgerechte Konstruktion) behandelt.
Über die parallel laufenden Vorlesungen/Übungen "Technisches Zeichnen und CAD" wird die konstruktive Umsetzung erarbeitet und vertieft.
Inhalt- Entwicklungsprozess: Kurzüberblick
- Stadien des Planungs- und Konstruktionsprozesses
- Anforderungen an eine Konstruktion und ihre technische Umsetzung
- Materialwahl - Grundlagen einer materialgerechten Konstruktion
- Fertigungsverfahren - Grundlagen einer fertigungsgerechten Konstruktion
- Verbindungen, Sicherungen, Dichtungen
- Maschinen-Standardelemente
- Lager & Führungen
- Getriebe und deren Komponenten
- Antriebe

Die Vorstellung der Maschinenelemente wird durch Fallbeispiele ergänzt und veranschaulicht.
SkriptDie Vorlesungsseiten werden vorab auf der Internetseite des pd|z publiziert.
Voraussetzungen / BesonderesFür den Bachelor-Studiengang Maschineningenieurwissenschaften wird Maschinenelemente (HS) zusammen mit Innovationsprozess (FS) geprüft.
529-0010-00LChemieO3 KP2V + 1UC. Mondelli, A. de Mello
KurzbeschreibungDas ist ein allgemeiner Chemiekurs für 1. Semester Bachelor-Studierende des Departements Maschinenbau und Verfahrenstechnik (D-MAVT).
LernzielDer Kurs hat folgende Ziele:
1) Ein genaues Verständnis der Grundprinzipien der Chemie und ihrer Anwendung zu bilden.
2) Ein Verständnis der atomaren und molekularen Natur von Materie und den chemischen Reaktionen, die ihre Transformationen beschreiben, zu entwickeln.
3) Jene Bereiche zu betonen, welche für einen Ingenieurskontext am relevantesten sind.
InhaltElektronische Struktur von Atomen, chemische Bindungen, Molekülgeometrie und Bindungstheorien, Gase, Thermodynamik, chemische Thermodynamik, chemische Kinetik, Gleichgewichte, Säure und Basen, Lösungen und intermolekulare Kräfte, Redox- und Elektrochemie.
SkriptFolien sind vor jeder Vorlesung erhältlich und können unter Link gefunden werden.
LiteraturDiese Lehrveranstaltung basiert auf "Chemistry the Central Science" von Brown, LeMay, Bursten, Murphy and Woodward. Pearson, 12. Ausgabe (internationale Ausgabe).
  •  Seite  1  von  1