Search result: Catalogue data in Autumn Semester 2017
Civil Engineering Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
101-0549-00L | Selected Topics on Legal Aspects in Civil Engineering | W+ | 3 credits | 2G | H. Briner, D. Trümpy | |
Abstract | Basic knowledge in public and private law of civil engineering. Examples of the subjects treated: space management, protection of the environment, legal procedures, standards for building technology and contracts. | |||||
Objective | Part 1: The students shall acquire basic knowledge of the public law concerning civil engineering: space management, conception of buildings, protection of the environment, procedures Part 2: The students shall acquire basic knowledge of the private law concerning civil engineering | |||||
Content | Teil 1: Jede Lektion behandelt für ein bestimmtes Stadium des Projekts ein Thema des öffentlichen Baurechts wie Bau- und Zonenordnungen, Quartierpläne, Umweltverträglichkeitsprüfungen, Baubewilligungsverfahren etc.. Teil 2: Grundzüge des privaten Baurechts wie Abnahme und Genehmigung von Bauwerken, Vollmacht des Architekten / Ingenieurs zu Rechtshandlungen namens des Bauherrn, Mängelrüge im Bauwesen, Mehrheit ersatzpflichtiger Baubeteiligter, Generalunternehmervertrag, Haftung des Baumaterialverkäufers, Bauhandwerkerpfandrecht, Grundzüge der SIA-Norm 118, Baukonsortium, technische Normen, internationale Bauverträge, Architekten / Ingenieure als Gerichtsexperten, Aspekte des Bauzivilprozesses | |||||
Lecture notes | D. Trümpy: Tafeln zu den Grundzügen des schweizerischen Bauvertragsrechts (Vorlesungsunterlage) H. Briner: Tafeln zu den Grundzügen des öffentlichen Raumplanungs-, Bau- und Umweltrechts (Vorlesungsunterlage) | |||||
Literature | - Stöckli P./Siegenthaler Th. (Hrsg.) Die Planerverträge, Schulthess 2013 - Gauch Peter, Werkvertrag, 5. Auflage, Schulthess 2011 - Lendi, M.; Nef, U.Chr.; Trümpy, D. (Hrsg.): Das private Baurecht in der Schweiz, vdf Zürich 1994 - Trümpy, D.: Architektenvertragstypen unter Berücksichtigung der Ausgabe 1984 der SIA-Ordnung 102, Zürcher Studien zum Privatrecht Nr. 67, Zürich 1989 | |||||
Prerequisites / Notice | Die Teilnehmer sollen stets ein Exemplar der SIA-Norm 118, der SIA-LHO 103 sowie die Gesetzesausgaben von OR und ZGB bei sich haben. | |||||
101-0577-00L | An Introduction to Sustainable Development in the Built Environment | O | 3 credits | 2G | G. Habert | |
Abstract | In 2015, the UN Conference in Paris shaped future world objectives to tackle climate change. in 2016, other political bodies made these changes more difficult to predict. What does it mean for the built environment? This course provides an introduction to the notion of sustainable development when applied to our built environment | |||||
Objective | At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment. In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment). For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects. The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment. Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction. After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development. The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development. | |||||
Content | The following topics give an overview of the themes that are to be worked on during the lecture. - Overview on the history and emergence of sustainable development - Overview on the current understanding and definition of sustainable development Methods - Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction) - Method 2: Life Cycle Costing - Method 3: Labels and certification Main issues: - Operation energy at building, urban and national scale - Mobility and density questions - Embodied energy for developing and developed world - Synthesis: Transition to sustainable development | |||||
Lecture notes | All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided. | |||||
Literature | A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures. | |||||
101-0587-00L | Workshop on Sustainable Building Certification ![]() Number of participants limited to 25 | W+ | 3 credits | 2G | D. Kellenberger, G. Habert | |
Abstract | Building labels are used to certify buildings and neighbourhoods in term of sustainability. Many different labels have been developed and can be used in Switzerland (LEED, DGNB, SNBS, Minergie). In this course the differences between the certification labels and its application on 3 emblematic case study buildings will be discussed. | |||||
Objective | After this course, the students are able to understand and use the different certification labels. They have a clear view of what the labels take into consideration and what they don't. | |||||
Content | Three buildings case study will be presented. Different certification schemes, including LEED (American standard), DGNB (German Standard with Swiss adaptation), SNBS, MINERGIE-ECO and 2000-Watt-Society (Swiss standards) will be presented and explained by experts. After this overall general presentation and in order to have a closer look to specific aspects of sustainability, students will work in groups and assess during one or two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels. This alternance of working session on one specific criteria for one specific building followed by a group presentation and discussion to compare labels is repeated for the different focus point (operation energy, mobility, daylight, indoor air quality). | |||||
Lecture notes | The slides from the presentations will be made available. | |||||
Literature | All documents for certification labels as well as detail plans of the buildings will be available for the students. | |||||
101-0439-00L | Introduction to Economic Analysis - A Case Study Approach with Cost Benefit Analysis in Transport Remark: Former Title "Introduction to Economic Policy - A Case Study Approach with Cost Benefit Analysis in Transport". | W | 6 credits | 4G | K. W. Axhausen, R. Schubert | |
Abstract | The course presents basic economic principles as well as cost benefit analyses in transport; it also introduces methods used to derive the monetary values of non-market goods. | |||||
Objective | Familiarity with basic microeconomic and macroeconomic principles and with the essential methods of project appraisal | |||||
Content | Basic microeconomic and macroeconomic üpronciples; Cost-Benefit-Analyses; multi-criteria analyses; European guidelines; stated response methods; travel cost approach and others; Valuation of travel time savings; valuation of traffic safety | |||||
Lecture notes | moodle platform for the basic economic principles; handouts | |||||
Literature | Taylor, M.P., Mankiw, N.G. (2014): Economics; Harvard Press VSS (2006) SN 640 820: Kosten-Nutzen-Analysen im Strassenverkehr, VSS, Zürich. Boardman, A.E., D.H. Greenberg, A.R. Vining und D.L. Weimer (2001) Cost – Benefit – Analysis: Concepts and Practise, Prentice-Hall, Upper Saddle River. ecoplan and metron (2005) Kosten-Nutzen-Analysen im Strassenverkehr: Kommentar zu SN 640 820, UVEK, Bern. | |||||
101-0419-00L | Railway Construction and Maintenance | W | 4 credits | 4G | U. A. Weidmann, P. Güldenapfel, M. Kohler, M. J. Manhart, further speakers | |
Abstract | Track geometry including calculation and measuring as well as related data systems; interaction between track and vehicles, vehicle dynamics, stress; track construction including special features of railway bridges and tunnels; track diagnostics and forcast; track maintenance and related methods | |||||
Objective | The lecture gives a deeper insight into track geometry, the interaction between track and vehicles as well as in construction and dimensioning of the track. Methods for the diagnosis of the state of the track and its forcast are shown. State-of-the-art maintenance strategies and technologies are presented. | |||||
Content | Track geometry including calculation and measuring as well as related data systems; interaction between track and vehicles, vehicle dynamics, stress; track construction including special features of railway bridges and tunnels; track diagnostics and forcast; track maintenance and related methods | |||||
Lecture notes | The slides will be made available. | |||||
Literature | A list with related technical literature will be handed out. | |||||
Prerequisites / Notice | The lecture Railway Infrastructures (Transportation II) is recommended. | |||||
101-0507-00L | Infrastructure Management 3: Optimisation Tools Remark: New title from HS17 on: Infrastructure Management 3: Optimisation Tools now in HS. Old title until FS17: Infrastructure Maintenance Management. | W+ | 3 credits | 2G | B. T. Adey | |
Abstract | This course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure. | |||||
Objective | Upon successful completion of this course students will be able: - to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure - to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure - to use operation research methods to find optimal solutions to infastructure management problems | |||||
Content | Part 1: Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies Part 2: Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models Part 3: Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies Part 4: Explanation of how operations research methods can be used to solve typical infrastructure management problems. | |||||
Lecture notes | A script will be given out at the beginning of the course. Class relevant materials will be distributed electronically before the start of class. A copy of the slides will be handed out at the beginning of each class. | |||||
Prerequisites / Notice | Successful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course. | |||||
101-0520-00L | Project Management: Project Execution to Closeout | W+ | 3 credits | 2G | J. J. Hoffman | |
Abstract | The course will give Engineering students a comprehensive overview and enduring understanding of the techniques, processes, tool and terminology to manage the Project Triangle (time, cost Quality) and to organize,analyze,control and report a complex project from start of Project Execution to Project Completion. Responsibilities will be detailed in each phase of the execution. | |||||
Objective | A student after completing the course will have the understanding of the Project Management duties, responsibilities, actions and decisions to be done during the Execution phase of a complex project. | |||||
Content | Execution Phase of the Project Engineering Management - Scope, EV Measurement, Reporting and Organization Procurement and Transportation - Scope, EV Measurement, Reporting and Organization Civil Construction and Erection - Scope, EV Measurement, Reporting and Organization Financial Reporting and forecasting Risk & Opportunity Identification Assessment and Quantification during Execution Team Organization and Leadership Risk and opportunity identification and quantification Contract Claims and Delays Execution Quality Environmental Health and safety during execution | |||||
Literature | Required and suggested reading will be uploaded on weakly basis. | |||||
Prerequisites / Notice | Prerequisite for this course is course Project Management: Pre-Tender to Contract Execution number 101-0517-01 G, unless otherwise approved by the lecturer. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
101-0329-00L | Tunnelling III | W | 4 credits | 2G | G. Anagnostou, E. Pimentel, M. Ramoni | |
Abstract | Deepen the knowledge on selected topics of underground construction as well as learning working out conceptual solutions of complex problems. | |||||
Objective | Lecture: Deepen the knowledge on selected topics of underground construction. Exercises: Conceptual solutions of complex problems. | |||||
Content | Caverns: Geometry, construction methods, support. Shafts: Construction methods, support. Urban tunnelling: Boundary conditions, system choice, alignement, design. Field measurements: Principles, monitoring layout, applications, interpretation. Cut and cover tunnels: Modelling, design. Exercising conceptual solution of complex tunnelling problems based upon discussion of current tunnel cases with particularly demanding problems in small groups. | |||||
Lecture notes | Autographieblätter | |||||
Literature | Empfehlungen | |||||
Prerequisites / Notice | Prerequisite: BSc course "Tunnelling", MSc courses "Tunnelling I" and "Tunnelling II". | |||||
101-0339-00L | Environmental Geotechnics | W | 3 credits | 2G | M. Plötze | |
Abstract | Introduction of basic knowledge about problems with contaminated sites, investigation of this sites, risque management, remediation and reclamation techniques as well as monitoring systems. Introduction in landfill design and engineering with focus on barrier- and drainage systems and lining materials, evaluation of geotechnical problems, e.g. stability | |||||
Objective | Introduction of basic knowledge about problems with contaminated sites, investigation of this sites, risque management, remediation and reclamation techniques as well as monitoring systems. Introduction in landfill design and engineering with focus on barrier- and drainage systems as wellas lining materials, evaluation of geotechnical problems, e.g. stability | |||||
Content | Definition of contaminated sites, site investigation methods, historical research and technical investigation, risque assessment, contamination transport, remediation, clean-up and retaining techniques (e.g. bioremediation, incineration, retaining walls, pump-and-treat, permeable reactive barriers), monitoring, research projects and results waste, waste disposal, treatment and management, multi-barrier-systems, site investigation, lining systems and recovering systems of landfill (e.g. materials, drainage systems, geosynthetics), stability, research projects and results | |||||
Lecture notes | Dr. R. Hermanns Stengele, Dr. M. Plötze: Environmental Geotechnics (german) digital | |||||
Prerequisites / Notice | excursion | |||||
101-0367-00L | Geotechnical Engineering in Transportation | W | 3 credits | 2G | D. Hauswirth | |
Abstract | Road design criteria, Technology of road construction materials, geotechnical testing methods in Laboratory and in situ, Planning, monitoring and interpretation of soil field tests, Soil classification for traffic construction, Compaction of road structures and dams, Frost characteristics of soil materials, soil stabilization | |||||
Objective | Aim of the course is to teach students the most important aspects of the road structure, its building and design methods. An essential part of the course is devoted to understand the influence of the insitu conditions: soil, underground, climate, water, as well as of the charachteristics of building materials and of road surface on the durability of the pavement. | |||||
Content | Road design criteria, Technology of road construction materials, geotechnical testing methods in Laboratory and in situ, Planning, monitoring and interpretation of soil field tests, Soil classification for traffic construction, Compaction of road structures and dams, Frost characteristics of soil materials, soil stabilization | |||||
Lecture notes | Autographie, Uebungsblätter, Handouts | |||||
Literature | as indicated in the course | |||||
Prerequisites / Notice | In den Vorlesungen und Übungen werden verschiedene Demonstrationsmaterialien verwendet. Voraussetzungen: Grundlagenkenntnisse in "Bodenmechanik/Grundbau" sowie in "Projektierung von Verkehrsanlagen" | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
101-0119-00L | Structural Masonry ![]() | W | 3 credits | 2G | N. Mojsilovic | |
Abstract | Knowledge of the engineering properties of materials for masonry construction. Technical understanding of the structural behaviour of load-bearing masonry structures subjected to in-plane forces and combined actions. Develop a technical competence for design procedures for load-bearing masonry structures by means of exercises. | |||||
Objective | Knowledge of the engineering properties of materials for masonry construction. Technical understanding of the structural behaviour of load-bearing masonry structures subjected to in-plane forces and combined actions. Develop a technical competence for design procedures for load-bearing masonry structures by means of exercises. | |||||
Content | Historical Development of Masonry Construction Detailing and Execution Construction Materials Structural Behaviour and Modelling Structural Analysis and Dimensioning Reinforced Masonry Seismic Behaviour | |||||
Lecture notes | Lecture notes | |||||
Literature | "Mauerwerk", Zimmerli Bruno, Schwartz Joseph und Schwegler Gregor, Birkhäuser Verlag Basel, 1999 "Mauerwerk, Bemessungsbeispiele zur Norm SIA 266", SIA Dokumentation D0257, 2015 "Mauerwerk", Norm SIA 266, 2015 "Mauerwerk - Ergänzende Festlegungen", Norm SIA 266/1, 2015 | |||||
Prerequisites / Notice | Structural Concrete III | |||||
101-0129-00L | Existing Structures | W | 3 credits | 2G | T. Vogel | |
Abstract | Treatment of the topic primarily from the perspective of a consulting engineer dealing with a single object. Elaboration of a systematic procedure for respective projects. Consolidation for concrete structures and extension to other construction methods. Uncovering of interfaces between owners, architects, contractors and specialists. | |||||
Objective | Treatment of the topic primarily from the perspective of a consulting engineer dealing with a single object. Elaboration of a systematic procedure for respective projects. Consolidation for concrete structures and extension to other construction methods. Uncovering of interfaces between owners, architects, contractors and specialists. | |||||
Content | Systematics of existing structures, examination (condition survey, condition examination, recommendation of remedial measures), non-destructive testing methods, natural stone masonry, strengthening methods (esp. plate bonding) | |||||
Lecture notes | Lecture notes | |||||
Literature | Normen SIA 269, 269/1 bis 269/6, SIA-Dokumentationen D 0239 und D 0240 der Einführungskurse | |||||
101-0149-00L | Plate and Shell Structures | W | 3 credits | 2G | T. Vogel, S. Fricker | |
Abstract | Basic load bearing behaviour of plate and shell structures | |||||
Objective | Comprehension of basic load bearing behaviour of plate and shell structures; knowledge of typical applications of different materials, ability to reasonably interpret and check results of numerical calculations; establish access to technical literature. | |||||
Content | In-plane loaded plates (cartesian and polar coordinates) Kinematics of in-plane loaded plates Folded plate structures Thin plates with small deflections Circular plates Thin plates with large deflections Geometry of curved surfaces Shells (basics, membrane theory, bending theory, form finding) | |||||
Lecture notes | Autographie "Flächentragwerke" | |||||
Literature | Empfohlen: - Girkmann, K.: "Flächentragwerke", Springer-Verlag, Wien, 1963, 632 pp. - Flügge, S.: "Stresses in Shells", Springer-Verlag, Berlin, 1967, 499 pp. - Hake, E. ; Meskouris,K. : "Statik der Flächentragwerke", Springer-Verlag, Berlin, 2001 - Timoshenko, S.P.; Woinowsky-Krieger, S.: "Theory of Plates and Shells", McGraw-Hill, New-York, 1959, 580 pp. | |||||
101-0159-00L | Method of Finite Elements II | W | 3 credits | 2G | E. Chatzi, G. Abbiati, K. Agathos | |
Abstract | Basic theoretical and procedural concepts of the method of finite elements (FE) for the analysis of - Plasticity - Large Displacement Problems - Fracture Mechanics - Nonlinear Dynamics - Thermomechanics | |||||
Objective | The class overviews advanced topics of the Method of Finite Elements, beyond linear elasticity. The concepts are introduced via theory, numerical examples, demonstrators and computer labs. See the class webpage for more information: http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html | |||||
Lecture notes | Handouts, Course Script available on http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html | |||||
Literature | Course Script available on http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html Useful (optional) Reading: - Nonlinear Finite Elements of Continua and Structures, T. Belytschko, W.K. Liu, and B. Moran. - Bathe, K.J., Finite Element Procedures, Prentice Hall, 1996. - Crisfield, M.A., Remmers, J.J. and Verhoosel, C.V., 2012. Nonlinear finite element analysis of solids and structures. John Wiley & Sons. - De Souza Neto, E.A., Peric, D. and Owen, D.R., 2011. Computational methods for plasticity: theory and applications. John Wiley & Sons. | |||||
101-0169-00L | Timber Structures II ![]() Prerequisite: Timber Structures I (101-0168-00L) | W | 3 credits | 2G | A. Frangi, R. Jockwer, M. Klippel, R. Steiger | |
Abstract | Basic knowledge of structural timber design including material behaviour especially anisotropy, moisture and long duration effects and their consideration in structural analysis and detailing. Design, detailing and structural analysis of timber roof structures, buildings and bridges. | |||||
Objective | Comprehension and application of basic knowledge of structural timber design including material behaviour especially anisotropy, moisture and long duration effects and their consideration in structural analysis and detailing. Design, detailing and structural analysis of timber roof structures, buildings and bridges. | |||||
Content | Field of application of timber structures; Timber as building material (wood structure, physical and mechanical properties of wood and wood-based products); Durability; Principles of design and dimensioning; Connections (dowels, nails, screws, glued connections); Timber components and assemblies (mechanically jointed beams, trusses); Design and detaling of timber roof structures, buildings and bridges. | |||||
Lecture notes | Autography Timber Structures Copies of lecture slides | |||||
Literature | Timber design tables HBT 1, Lignum (2012) Swiss Standard SIA 265 (2012) Swiss Standard SIA 265/1 (2009) | |||||
Prerequisites / Notice | Timber Structures I | |||||
101-0189-00L | Seismic Design of Structures II | W | 3 credits | 2G | B. Stojadinovic | |
Abstract | The following advanced topics are covered: 1) behavior and non-linear response of structural systems under earthquake excitation; 2) seismic behavior and design of moment frame, braced frame, shear wall and masonry structures; 3) fundamentals of seismic isolation; and 4) assessment and retrofit of existing buildings. These topics are discussed in terms of performance-based seismic design. | |||||
Objective | After successfully completing this course the students will be able to: 1. Use the knowledge of nonlinear dynamic response of structures to interpret the design code provisions and apply them in seismic design structural systems. 2. Explain the seismic behavior of moment frame, braced frame and shear wall structural systems and successfully design such systems to achieve the performance objectives stipulated by the design codes. 3. Determine the performance of structures under earthquake loading using modern performance assessment methods and analysis tools. | |||||
Content | This course completes the series of two courses on seismic design of structures at ETHZ. Building on the material covered in Seismic Design of Structures I, the following advanced topics will be covered in this course: 1) behavior and non-linear response of structural systems under earthquake excitation; 2) seismic behavior and design of moment frame, braced frame and shear wall structures; 3) fundamentals of seismic isolation; and 4) assessment and retrofit of existing buildings. These topics will be discussed from the standpoint of performance-based design. | |||||
Lecture notes | The electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions. | |||||
Literature | Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, Yousef Borzorgnia and Vitelmo Bertero, Eds., CRC Press, 2004 Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2014 Erdbebensicherung von Bauwerken, 2nd edition, Hugo Bachmann, Birkhäuser, Basel, 2002 | |||||
Prerequisites / Notice | ETH Seismic Design of Structures I course, or equivalent. Students are expected to understand the seismological nature of earthquakes, to characterize the ground motion excitation, to analyze the response of elastic single- and multiple-degree-of-freedom systems to earthquake excitation, to use the concept of response and design spectrum, to compute the equivalent seismic loads on simple structures, and to perform code-based seismic design of simple structures. Familiarity with structural analysis software, such as SAP2000, and general-purpose numerical analysis software, such as Matlab, is expected. | |||||
101-0179-00L | Probabilistic Seismic Risk Analysis and Management for Civil Systems Does not take place this semester. | W | 3 credits | 2G | B. Stojadinovic, to be announced | |
Abstract | Advanced topics covered in this course are: 1) probabilistic seismic hazard analysis; 2) probabilistic seismic risk analysis; 3) seismic risk management using structural and financial engineering means; and, time permitting, 4) advanced topics in systemic probabilistic risk evaluation. | |||||
Objective | After successfully completing this course the students will be able to: 1. Gather the necessary data and conduct a probabilistic seismic hazard analysis for a site. 2. Gather the necessary data and conduct a probabilistic vulnerability analysis of a building or an element of a civil infrastructure system at a site. 3. Design structural and/or financial engineering solutions to mitigate the seismic risk at a site. | |||||
Content | This course extends the series of two courses on seismic design of structures at ETHZ and introduces the topic of probabilistic seismic risk analysis and seismic risk management for the build environment and civil infrastructure systems. The following advanced topics will be covered in this course: 1) probabilistic seismic hazard analysis; 2) probabilistic seismic risk analysis; 3) seismic risk management using structural and financial engineering means; and, time permitting, 4) advanced topics in systemic probabilistic risk evaluation. | |||||
Lecture notes | The electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. This will include the lecture notes, additional reading, and exercise problems and solutions. There is no textbook for this course. | |||||
Literature | Reading material: - Jack R Benjamin, C. Allin Cornell (2014) Probability, Statistics, and Decision for Civil Engineers - A. H-S. Ang (Author), W. H. Tang Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering - P.E. Pinto, R. Giannini and P. Franchin (2004) Seismic reliability analysis of structures, IUSSPress. Pavia; - McGuire, R.K. 2004. Seismic hazard and risk analysis: EERI Monograph MNO-10, Earthquake Engineering Research Institute. - A Mc. Neil, R. Frey and P. Embrechts, Quantitative Risk Management, Concepts, Techniques and Tools, Princeton University Press, 2015 - R. Rees, A. Wambach, The Microeconomics of Insurance, Foundations and Trends in Microeconomics, Vol. 4, Mps. 1-2 (2008), pp. 1- 163, DOI: 10.1561/0700000023 - Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, Yousef Borzorgnia and Vitelmo Bertero, Eds., CRC Press, 2004 - Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2012 - Erdbebensicherung von Bauwerken, 2nd edition, Hugo Bachmann, Birkhäuser, Basel, 2002 References: -Norm SIA 261: Einwirkungen auf Tragwerke (Actions on Structures). Schweizerischer Ingenieur- und Architekten-Verein, Zürich, 2003 Software: - Bispec: software for unidirectional and bidirectional dynamic time-history and spectral seismic analysis of a simple dynamic system. http://eqsols.com/Bispec.aspx - SAP2000 v15.1: general-purpose 3D nonlinear structural analysis software. http://www.csiberkeley.com/sap2000 - OpenSees: Open System for Earthquake Engineering Simulation, is an object-oriented, open- source software framework. http://opensees.berkeley.edu/ | |||||
Prerequisites / Notice | ETH Seismic Design of Structures I course (101-0188-00), or equivalent. Students are expected to understand the seismological nature of earthquakes, to characterize the ground motion excitation, to analyze the response of elastic single- and multiple-degree-of-freedom systems to earthquake excitation, to use the concept of response and design spectrum, to compute the equivalent seismic loads on simple structures, and to perform code-based seismic design of simple structures. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
101-0439-00L | Introduction to Economic Analysis - A Case Study Approach with Cost Benefit Analysis in Transport Remark: Former Title "Introduction to Economic Policy - A Case Study Approach with Cost Benefit Analysis in Transport". | W | 6 credits | 4G | K. W. Axhausen, R. Schubert | |
Abstract | The course presents basic economic principles as well as cost benefit analyses in transport; it also introduces methods used to derive the monetary values of non-market goods. | |||||
Objective | Familiarity with basic microeconomic and macroeconomic principles and with the essential methods of project appraisal | |||||
Content | Basic microeconomic and macroeconomic üpronciples; Cost-Benefit-Analyses; multi-criteria analyses; European guidelines; stated response methods; travel cost approach and others; Valuation of travel time savings; valuation of traffic safety | |||||
Lecture notes | moodle platform for the basic economic principles; handouts | |||||
Literature | Taylor, M.P., Mankiw, N.G. (2014): Economics; Harvard Press VSS (2006) SN 640 820: Kosten-Nutzen-Analysen im Strassenverkehr, VSS, Zürich. Boardman, A.E., D.H. Greenberg, A.R. Vining und D.L. Weimer (2001) Cost – Benefit – Analysis: Concepts and Practise, Prentice-Hall, Upper Saddle River. ecoplan and metron (2005) Kosten-Nutzen-Analysen im Strassenverkehr: Kommentar zu SN 640 820, UVEK, Bern. | |||||
101-0469-00L | Road Safety | W | 6 credits | 4G | H. Schüller, M. Deublein | |
Abstract | The collection and the methods of statistical and geographical analysis of road accidents are important fundamentals of this course. Safety Aspects in design of urban roads are discussed and measures for improving the safety situation are presented. Procedures of infrastructure safety management for administrations and police are another topic. | |||||
Objective | Imparting knowledge base about road safety and the event of accident, presenting possibilities to increase road safety | |||||
Content | Accident origin, collection of road accidents, statistical (descriptive and multivariate, accident prediction models) and geographical analysis of road accidents, risk analysis and rehabilitation measures, road safety instruments for infrastructure with focus on road safety audit, Swiss and international transport policy | |||||
Literature | Basic literature: message Via sicura; Directive 2008/96/EC on road infrastructure safety management; ELVIK, R.; VAA, T. (2004). The Handbook of Road Safety Measures. Oxford: ELSEVIER Ltd.; EU-Projekt RiPCORD-iSEREST (http://ripcord.bast.de/) Further literature: will be presented during the course | |||||
101-0419-00L | Railway Construction and Maintenance | W | 4 credits | 4G | U. A. Weidmann, P. Güldenapfel, M. Kohler, M. J. Manhart, further speakers | |
Abstract | Track geometry including calculation and measuring as well as related data systems; interaction between track and vehicles, vehicle dynamics, stress; track construction including special features of railway bridges and tunnels; track diagnostics and forcast; track maintenance and related methods | |||||
Objective | The lecture gives a deeper insight into track geometry, the interaction between track and vehicles as well as in construction and dimensioning of the track. Methods for the diagnosis of the state of the track and its forcast are shown. State-of-the-art maintenance strategies and technologies are presented. | |||||
Content | Track geometry including calculation and measuring as well as related data systems; interaction between track and vehicles, vehicle dynamics, stress; track construction including special features of railway bridges and tunnels; track diagnostics and forcast; track maintenance and related methods | |||||
Lecture notes | The slides will be made available. | |||||
Literature | A list with related technical literature will be handed out. | |||||
Prerequisites / Notice | The lecture Railway Infrastructures (Transportation II) is recommended. |
Page 1 of 3
All