Suchergebnis: Katalogdaten im Herbstsemester 2017

Lebensmittelwissenschaft Master Information
Vertiefung in Food Processing
Disziplinäre Fächer
NummerTitelTypECTSUmfangDozierende
752-3103-00LFood Rheology IW+3 KP2VP. A. Fischer
KurzbeschreibungRheology is the science of flow and deformation of matter such as polymers, dispersions (emulsions, foams, suspensions), and colloidal systems. The fluid dynamical basis, measuring techniques (rheometry), and the flow properties of different fluids (Newtonian, non-Newtonian, viscoelastic) are introduced and discussed.
LernzielThe course provides an introduction on the link between flow and structural properties of flowing material. Rheometrical techniques and appropriate measuring protocols for the characterization of complex fluids will be discussed. The concept of rheological constitutive equations and the application to different material classes are established.
InhaltLectures will be given on general introduction (4h), fluid dynamics (2h), complex flow behavior (4h), influence of temperature (2h), rheometers (4h), rheological tests (6h) and structure and rheology of complex fluids (4h).
SkriptNotes will be handed out during the lectures.
LiteraturProvided in the lecture notes.
752-2003-00LSelected Topics in Food TechnologyW+3 KP2VS. Palzer, R. Stadler
Kurzbeschreibung
Lernziel
752-2314-00LPhysics of Food ColloidsW+3 KP2VP. A. Fischer, R. Mezzenga
KurzbeschreibungIn Physics of Food Colloids the principles of colloid science will applied to the aggregation of food materials based on proteins, polysaccharides, and emulsifiers. Mixtures of such raw material determine the appearance and performance of our daily food. In a number of examples, colloidal laws are linked to food science and the manufacturing and processing of food.
LernzielThe aggregation of food material determines the appearance and performance of complex food system as well as nutritional aspects. The underlying colloidal laws reflect the structure of the individual raw material (length scale, time scale, and interacting forces). Once these concepts are appreciated the aggregation of most food systems falls into recognizable patterns that can be used to modify and structure exiting food or to design new products. The application and use of these concepts are discussed in light of common food production.
InhaltLectures include interfacial tension (4h), protein aggregation in bulk and interfaces (4h), Pickering emulsions (2h), gels (2h), aggregation of complex mixtures (4h), and the use of light scattering in investigation complex food structures (8h). Most chapters include some hand-ons examples of the gain knowledge to common food products.
SkriptNotes will be handed out during the lectures.
LiteraturProvided in the lecture notes.
752-3021-00LFood Process Design and OptimizationW+4 KP2GE. J. Windhab
KurzbeschreibungS-PRO2 scheme and quantitative understanding of process-structure functions. Process characterisation by dimension analysis. Optimization aspects/criteria for stirring, mixing, dispersing, spraying and extrusion flow processes of multiphase multi-scale structured food systems. Up- and down-scaling and industrial applications.
Training by case studies from research and industrial production.
LernzielQuantitative process analysis and derivation of process-structure functions for complex liquid or semi-liquid food systems with non-Newtonial flow properties. Handling of optimisation and up-/down-scaling procedures.
InhaltS-PRO2 scheme, reverse engineering approach, dimension analysis, Metzner-Otto and Rieger Novack design schemes of stirred reactors for non-Newtonian fluid processing, mixing/mixing statistics, mixing characteristics, power charac-teristics, dispersing characteristics, dispersing processes in rotor/ stator and membrane devices, spray processing, extrusion processing, diverse case studies for design and scaling of processes for food structure processing
Skriptprinted handouts (ca. 180)
LiteraturList of ca. 30 papers and 5 books given in course
Voraussetzungen / BesonderesVT I-III
752-3023-00LProcess Measurements and AutomationW+3 KP2GE. J. Windhab
KurzbeschreibungOverview on Process Automation, Information Management in processes, process data handling and analysis, In-line measurements of complex food systems, Process control schemes, Overview of sensors and sensor principles, integrated process control case studies
LernzielUnderstanding the interplay of in-line measurements of complex food properties in processes, process data handling and data analysis as well as building blocks for process control.
InhaltOverview Process Automation, Process Control and process data management, Industrial design of automated/controlled processes, overview on sensors/sensor principles, case studies of in-line measurements and control in/of food production processes
SkriptPrinted script (120 pages, 80 figures), diverse publications
LiteraturList of publications and books given in course
Voraussetzungen / BesonderesVT I-III
752-3201-00LEmerging Thermal and Non Thermal Food ProcessingW3 KP2VA. Mathys
KurzbeschreibungThis course is built on the holistic approach in sustainable food processing via the consideration of the total value chain. Selected mechanical, biotechnological, thermal and non-thermal techniques for best biomass and energy use efficiency will be investigated. Focused technologies are new thermal processes, high pressure techniques, electroporation and different radiation based sources.
LernzielUnderstanding of selected emerging food processing concepts with focus on lower process intensity for healthy and high quality food production, waste reduction as well as biomass and energy use efficiency. Updates from academia and industry around new trends in food process development
InhaltEmerging combined processes based on mechanical, thermal and non-thermal techniques, Multi hurdle technology concept for preservation, Extreme high temperature-short time processes, high pressure techniques, electroporation, radiation, Biorefineries based on emerging process elements, Ongoing industry initiatives
SkriptScript will be distributed before the lecture via eDoz.
LiteraturSelected References, will be extented:

Kessler, H. G. (2002). Food and Bio Process Engineering - Im Verlag A. Kessler., Freising.

Bhattacharya, S. (2014). Conventional and Advanced Food Processing Technologies. John Wiley & Sons, Ltd. Online ISBN: 9781118406281.

Knorr, D. (1999). Novel approaches in food-processing technology: new technologies for preserving foods and modifying function. Current Opinions in Biotechnology, 10, 485-491.

Toepfl, S., Mathys, A., Heinz, V. & Knorr, D. (2006). Review: Potential of emerging technologies for energy efficient and environmentally friendly food processing. Food Reviews International, 22(4), 405 - 423.

Mathys, A., Ph.D. Thesis. TU Berlin. Link

Toepfl, S., Ph.D. Thesis. TU Berlin. Link

M. E. G. Hendrickx & D. Knorr. Ultra high pressure treatments of foods (pp. 77-114). Kluwer Academic/ Plenum Publishers, New York.
Voraussetzungen / BesonderesIt is recommended to complete the course Sustainable Food Processing (Spring Semester, 752-3200-00L) before.
Methodische Fächer
NummerTitelTypECTSUmfangDozierende
401-0625-01LApplied Analysis of Variance and Experimental Design Information W+5 KP2V + 1UL. Meier
KurzbeschreibungPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
LernzielParticipants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.
InhaltPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
LiteraturG. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000.
Voraussetzungen / BesonderesThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.
401-0649-00LApplied Statistical RegressionW+5 KP2V + 1UM. Dettling
KurzbeschreibungThis course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.
LernzielThe students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.
InhaltThe course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.
SkriptA script will be available.
LiteraturFaraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis
Voraussetzungen / BesonderesThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Regression" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
Optionale Fächer
NummerTitelTypECTSUmfangDozierende
752-3105-00LPhysiology Guided Food Structure and Process DesignW3 KP2VE. J. Windhab, B. Le Révérend, T. Wooster
KurzbeschreibungA “cook-and look” approach to process design is no longer applicable in the current environmental, nutritional and competitive constraints. The modern R&D chemical/food engineer should have a clear focus on the desired structure that needs to be achieved to design a process line or a processing equipment, coupled with in depth knowledge of the processed materials.
LernzielThe objective of this course is to highlight the intimate links between human physiology and product sensory and nutritional functions. To optimize these functions, an understanding of the physiological functions that interact and encode the actions of those product structures must be well understood.

Therefore the objective of this course is for students to be equipped with a skill set that will encompass basic digestion and sensory physiology knowledge and food structures.

The students will be exposed to this interplay all along the GI tract, including taste, aroma and texture perception, swallowing mechanics and gastro intestinal digestion with an engineering or physical sciences angle.
  •  Seite  1  von  1