Suchergebnis: Katalogdaten im Herbstsemester 2017

Interdisziplinäre Naturwissenschaften Bachelor Information
Physikalisch-Chemischen Fachrichtung
1. Semester (Physikalisch-Chemische Richtung)
Obligatorische Fächer Basisprüfung
NummerTitelTypECTSUmfangDozierende
401-1261-07LAnalysis I Information O10 KP6V + 3UM. Einsiedler
KurzbeschreibungEinführung in die Differential- und Integralrechnung in einer reellen Veränderlichen: Grundbegriffe des mathematischen Denkens, Zahlen, Folgen und Reihen, topologische Grundbegriffe, stetige Funktionen, differenzierbare Funktionen, gewöhnliche Differentialgleichungen, Riemannsche Integration.
LernzielMathematisch exakter Umgang mit Grundbegriffen der Differential-und Integralrechnung.
LiteraturH. Amann, J. Escher: Analysis I
Link

J. Appell: Analysis in Beispielen und Gegenbeispielen
Link

R. Courant: Vorlesungen über Differential- und Integralrechnung
Link

O. Forster: Analysis 1
Link

H. Heuser: Lehrbuch der Analysis
Link

K. Königsberger: Analysis 1
Link

W. Walter: Analysis 1
Link

V. Zorich: Mathematical Analysis I (englisch)
Link

A. Beutelspacher: "Das ist o.B.d.A. trivial"
Link

H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten
Link
401-1151-00LLineare Algebra IO7 KP4V + 2UM. Akveld
KurzbeschreibungEinführung in die Theorie der Vektorräume für Studierende der Mathematik und der Physik: Grundlagen, Vektorräume, lineare Abbildungen, Lösungen linearer Gleichungen und Matrizen, Determinanten, Endomorphismen, Eigenwerte und Eigenvektoren.
Lernziel- Beherrschung der Grundkonzepte der Linearen Algebra
- Einführung ins mathematische Arbeiten
Inhalt- Grundlagen
- Vektorräume und lineare Abbildungen
- Lineare Gleichungssysteme und Matrizen
- Determinanten
- Endomorphismen und Eigenwerte
Literatur- H. Schichl und R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Siehe: Link
- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Siehe: Link
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Siehe: Link
- S. H. Friedberg, A. J. Insel und L. E. Spence: Linear Algebra. Pearson 2003. Link
- R. Pink: Lineare Algebra I und II. Skript. Siehe: Link
402-1701-00LPhysik IO7 KP4V + 2UA. Wallraff
KurzbeschreibungDiese Vorlesung stellt eine erste Einführung in die Physik dar und behandelt Themen der klassischen Mechanik.
LernzielAneignung von Kenntnissen der physikalischen Grundlagen in der klassischen Mechanik. Fertigkeiten im Lösen von physikalischen Fragen anhand von Übungsaufgaben.
529-0011-01LAllgemeine Chemie I (PC) Information O3 KP2V + 1UH. J. Wörner
KurzbeschreibungAufbau der Materie und Atombau; Energiezustände des Atoms; Quantenmechanisches Atommodell; Chemische Bindung; Gasgesetze.
LernzielEinführung in die physikalischen Grundlagen der Chemie.
InhaltAufbau der Materie und Atombau: Atomtheorie, Elementarteilchen, Atomkern, Radioaktivität, Kernreaktionen. Energiezustände des Atoms: Ionisierungsenergien, Atomspektroskopie, Termschemata. Quantenmechanisches Atommodell: Dualität Welle-Teilchen, Unbestimmtheitsrelation, Schrödingergleichung, Wasserstoffatom, Aufbau des Periodensystems der Elemente. Chemische Bindung: Ionische Bindung, kovalente Bindung, Molekülorbitale. Gasgesetze: Ideale Gase
SkriptBeachten Sie die Homepage zur Vorlesung.
LiteraturBeachten Sie die Homepage zur Vorlesung.
Voraussetzungen / BesonderesVoraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung.
Übrige obligatorische Fächer des Basisjahrs
NummerTitelTypECTSUmfangDozierende
529-0011-04LAllgemeine Chemie (Praktikum) Belegung eingeschränkt - Details anzeigen
Obligatorische Belegung bis spätestens 18.9.2017
Informationen zum Praktikum am Begrüssungstag.
O8 KP12PH. V. Schönberg, E. C. Meister
KurzbeschreibungQualitative Analyse (Kationen- und Anionennachweis), Säure-Base-Gleichgewicht (pH- Wert, Titrationen, Puffer), Fällungsgleichgewichte (Gravimetrie, Potentiometrie, Leitfähigkeit), Redoxreaktionen (Synthese, Redoxtitrationen, galvanische Elemente), Metallkomplexe (Synthese, komplexometrische Titration)
Auswertung von Messdaten, Aggregatzustände (Dampfdruck, Leitfähigkeitsmessungen, Kalorimetrie)
LernzielQualitative Analyse (einfacher Kationen- und Anionentrennungsgang, Nachweis von Kationen und Anionen), Säure-Base-Gleichgewicht (Säure- und Basenstärke, pH- und pKa-Werte, Titrationen, Puffer, Kjeldahlbestimmung), Fällungsgleichgewichte (Gravimetrie, Potentiometrie, Leitfähigkeit), Oxidationszahlen und Redoxverhalten (Synthese), Redoxtitrationen, galvanische Elemente), Metallkomplexe (Synthese von Komplexen, Ligandaustauschreaktionen, Komplexometrische Titration)
Auswertung von Messdaten (Messfehler, Mittelwert, Fehlerbetrachtung), Aggregatzustände (Dampfdruck), Eigenschaften von Elektrolyten (Leitfähigkeitsmessungen), Thermodynamik (Kalorimetrie)
InhaltDas Praktikum in allgemeiner Chemie soll die Studierenden in wissenschaftliches Arbeiten einführen und sie mit einfachen experimentellen Arbeiten im Laboratorium vertraut machen. Dabei sollen erste Erfahrungen mit dem Reaktionsverhalten von Stoffen gemacht werden. Neben einer Reihe von quantitativen Versuchen vermitteln qualitative Versuche Kenntnisse über die chemischen Eigenschaften von Substanzen. Die einzelnen Versuche sind so ausgewählt, dass ein möglichst vielfältiger Überblick über Substanzklassen und Phänomene der Chemie erhalten wird. In einem physikalisch – chemischen Teil des Praktikums werden Versuche zum Verhalten von Substanzen in ihren Aggregatzuständen durchgeführt und die Änderung ausgesuchter physikalischer Grössen erfasst und diskutiert.
SkriptLink
Voraussetzungen / BesonderesElektronische Einschreibung obligatorisch bis spätestens 1 Woche nach Semesterbeginn
Wahlfächer
NummerTitelTypECTSUmfangDozierende
529-0011-02LAllgemeine Chemie I (AC)W3 KP2V + 1UA. Togni
KurzbeschreibungEinführung in die Chemie von ionischen Gleichgewichten: Säuren und Basen, Redoxreaktionen, Komplexbildung und Fällungsreaktionen
LernzielVerstehen und Beherrschen von ionischen Gleichgewichten in qualitativer und quantitativer Hinsicht
InhaltGleichgewicht und Gleichgewichtsbedingungen, ein- und mehrprotonige Säuren und Basen in wässriger Lösung, Berechnung von Gleichgewichtskonzentrationen, Aciditätsfunktionen, Lewis-Säuren, Säuren in nicht-wässrigen Medien, Redoxreaktionen, Galvanische Zellen, Elektrodenpotentiale, Nernst-Gleichung, Metallkomplexe, Stufenweise Komplexbildung, Fällungsreaktionen
SkriptKopien der Vorlesungspräsentationen sowie andere Unterlagen werden als PDF über die moodle-Plattform zur Verfügung gestellt
LiteraturC. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0
529-0011-03LAllgemeine Chemie I (OC)W3 KP2V + 1UH. Wennemers
KurzbeschreibungEinführung in die organische Chemie. Klassische Strukturlehre, Stereochemie, die chemische Bindung, Symmetrielehre, Nomenklatur, organische Thermochemie, Konformationsanalyse, Einführung in chemische Reaktionen.
LernzielEinführung in die Formelsprache der Chemie sowie in strukturelle und energetische Grundlagen der organischen Chemie
InhaltEinführung in die Geschichte der Organischen Chemie, Einführung in die Nomenklatur, Klassische Strukturlehre und Stereochemie: Isomerie, Fischer-Projektion, CIP-Regeln, Punktgruppen, Molekülsymmetrie und Chiralität, Topizität, Chemische Bindung: Lewis-Bindungsmodell und Resonanztheorie in der organischen Chemie, Beschreibung linear und cyclisch konjugierter Moleküle, Aromatizität, Hückel-Regel, organische Thermochemie, organisch-chemische Reaktionslehre, zwischenmolekulare Wechselwirkungen.
SkriptUnterlagen werden als PDF über die ILIAS-Plattform zur Verfügung gestellt
LiteraturC. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0
3. Semester (Physikalisch-Chemische Richtung)
Obligatorische Fächer: Prüfungsblock
NummerTitelTypECTSUmfangDozierende
529-0422-00LPhysikalische Chemie II: Chemische Reaktionskinetik Information O4 KP3V + 1UF. Merkt
KurzbeschreibungEinführung in die chemische Reaktionskinetik. Grundbegriffe: Geschwindigkeitsgesetze, Elementarreaktionen und zusammengesetzte Reaktionen, Molekularität, Reaktionsordnung. Experimentelle Methoden der Reaktionskinetik. Einfache Theorie chemischer Reaktionen. Reaktionsmechanismen und komplexe kinetische Systeme, Kettenreaktionen, Katalyse und Enzymkinetik.
LernzielEinführung in die chemische Reaktionskinetik
InhaltGrundbegriffe: Geschwindigkeitsgesetze, Elementarreaktionen und zusammengesetzte Reaktionen, Molekularität, Reaktionsordnung. Experimentelle Methoden der Reaktionskinetik bis hin zu neuen Entwicklungen der Femtosekundenkinetik. Einfache Theorie chemischer Reaktionen: Temperaturabhängigkeit der Geschwindigkeitskonstante und Arrheniusgleichung, Stosstheorie, Reaktionsquerschnitte, Theorie des Übergangszustandes. Zusammengesetzte Reaktionen: Reaktionsmechanismen und komplexe kinetische Systeme, Näherungsverfahren, Kettenreaktionen, Explosionen und Detonationen. Homogene Katalyse und Enzymkinetik. Kinetik geladener Teilchen. Diffusion und diffusionskontrollierte Reaktionen. Photochemische Kinetik. Heterogene Reaktionen und heterogene Katalyse.
Literatur- M. Quack und S. Jans-Bürli: Molekulare Thermodynamik und Kinetik, Teil 1, Chemische Reaktionskinetik, VdF, Zürich, 1986.
- G. Wedler: Lehrbuch der Physikalischen Chemie, Verlag Chemie, Weinheim, 1982.
Voraussetzungen / BesonderesVoraussetzungen:
- Mathematik I und II
- Allgemeine Chemie I und II
- Physikalische Chemie I
402-2883-00LPhysics IIIO7 KP4V + 2UJ. Home
KurzbeschreibungEinführung in das Gebiet der Quanten- und Atomphysik und in die Grundlagen der Optik und statistischen Physik.
LernzielGrundlegende Kenntnisse in Quanten- und Atomphysik und zudem in Optik und statistischer Physik werden erarbeitet. Die Fähigkeit zur eigenständigen Lösung einfacher Problemstellungen aus den behandelten Themengebieten wird erreicht. Besonderer Wert wird auf das Verständnis experimenteller Methoden zur Beobachtung der behandelten physikalischen Phänomene gelegt.
InhaltEinführung in die Quantenphysik: Atome, Photonen, Photoelektrischer Effekt, Rutherford Streuung, Compton Streuung, de-Broglie Materiewellen.

Quantenmechanik: Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialtopf, harmonischer Oszillator, Wasserstoffatom, Spin.

Atomphysik: Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, LASER.

Optik: Fermatsches Prinzip, Linsen, Abbildungssysteme, Beugung und Brechung, Interferenz, geometrische und Wellenoptik, Interferometer, Spektrometer.

Statistische Physik: Wahrscheinlichkeitsverteilungen, Boltzmann-Verteilung, statistische Ensembles, Gleichverteilungssatz, Schwarzkörperstrahlung, Plancksches Strahlungsgesetz.
SkriptIm Rahmen der Veranstaltung wird ein Skript in elektronischer Form zur Verfügung gestellt.
LiteraturQuantenmechanik/Atomphysik/Moleküle: "Atom- und Quantenphysik", H. Haken and H. C. Wolf, ISBN 978-3540026211

Optik: "Optik", E. Hecht, ISBN 978-3486588613

Statistische Mechanik: "Statistical Physics", F. Mandl ISBN 0-471-91532-7
Wahlfächer
Im Bachelor-Studiengang Interdisziplinäre Naturwissenschaften können die Studierenden prinzipiell alle Lehrveranstaltungen wählen, die in einem Bachelor-Studiengang der ETH angeboten werden.

Zu Beginn des 2. Studienjahrs legt jeder Studierende in Absprache mit dem Studiendelegierten für Interdisziplinäre Naturwissenschaften sein/ihr individuelles Studienprogramm fest. Siehe Studienreglement 2010 für Details.
NummerTitelTypECTSUmfangDozierende
252-0027-00LEinführung in die Programmierung Information W7 KP4V + 2UT. Gross
KurzbeschreibungEinführung in grundlegende Konzepte der modernen Programmierung. Vermittlung der Fähigkeit, Programme von höchster Qualität zu entwickeln. Einführung in Prinzipien des Software Engineering mit objekt-orientiertem Ansatz.
LernzielViele Menschen können Programme schreiben. Die Ziele der Vorlesung "Einführung in die Programmierung" gehen aber darüber hinaus: sie lehrt die fundamentalen Konzepte und Fertigkeiten, die nötig sind, um professionelle Programme zu erstellen. Nach erfolgreichem Abschluss der Vorlesung beherrschen Studenten die fundamentalen Kontrollstrukturen, Datenstrukturen, die Verfahren zur Problemlösung und Mechanismen von Programmiersprachen, die die moderne Programmierung auszeichnen. Sie kennen die Grundregeln für die Produktion von Software in hoher Qualität. Sie haben die nötigen Vorkenntnisse für weiterführende Vorlesungen, die das Programmieren in spezialisierten Anwendungsgebieten vorstellen.
InhaltGrundlagen der objekt-orientierten Programmierung. Objekte und Klassen. Vor- und Nachbedingungen, Invarianten, Design by Contract. Elementare Kontrollstrukturen. Zuweisungen und Referenzierung. Grundbegriffe aus der Hardware. Elementare Datenstrukturen und Algorithmen. Rekursion. Vererbung und Interfaces, Einführung in Event-driven Design und Concurrent Programming. Grundkonzepte aus Software Engineering wie dem Softwareprozess, Spezifikation und Dokumentation, Reuse und Quality Assurance.
SkriptDie Vorlesungsfolien auf der Vorlesungswebseite zum Download zur Verfügung gestellt.
LiteraturWeitere Literaturangaben auf der Web Seite der Vorlesung.
Voraussetzungen / BesonderesDie Vorlesung hat keine besonderen Voraussetzungen. Sie erwartet das gleichzeitige Belegen der anderen Informatik Vorlesungen des Basisjahres.
252-0847-00LInformatik Information W5 KP2V + 2UB. Gärtner
KurzbeschreibungDie Vorlesung gibt eine Einführung in das Programmieren anhand der Sprache C++. Wir behandeln fundamentale Typen, Kontrollanweisungen, Funktionen, Felder und Klassen. Die Konzepte werden dabei jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
LernzielDas Ziel der Vorlesung ist eine algorithmisch orientierte Einführung ins Programmieren.
InhaltDie Vorlesung gibt eine Einführung in das Programmieren anhand der Sprache C++. Wir behandeln fundamentale Typen, Kontrollanweisungen, Funktionen, Felder und Klassen. Die Konzepte werden dabei jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
SkriptEin Skript in englischer Sprache sowie Handouts in deutscher Sprache werden semesterbegleitend elektronisch herausgegeben.
LiteraturAndrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.

Stanley B. Lippman: C++ Primer, 3. Auflage, Addison-Wesley, 1998.

Bjarne Stroustrup: The C++ Programming Language, 3. Auflage, Addison-Wesley, 1997.

Doina Logofatu: Algorithmen und Problemlösungen mit C++, Vieweg, 2006.

Walter Savitch: Problem Solving with C++, Eighth Edition, Pearson, 2012
327-0103-00LEinführung in die MaterialwissenschaftW3 KP3GM. Niederberger, L. Heyderman, N. Spencer, P. Uggowitzer
KurzbeschreibungGrundlegende Kenntnisse und Verständnis der atomistischen und makroskopischen Konzepte der Materialwissenschaft.
LernzielBasiswissen und Verständnis der atomistischen und makroskopischen Konzepte in der Materialwissenschaft.
InhaltInhalt:
Atomaufbau
Atombindung
Kristalline Struktur
Kristalldefekte
Thermodynamik und Phasendiagramme
Diffusion und Diffusionskontrollierte Prozesse,
Mechanisches & Thermisches Verhalten,
Elektrische, optische und magnetische Eigenschaften
Oberflächen
Auswahl und Einsatz von Werkstoffen
SkriptLink
LiteraturJames F. Shackelford
Introduction to Materials Science for Engineers
5th Ed., Prentice Hall, New Jersey, 2000
327-0301-00LMaterialwissenschaft IW3 KP3GJ. F. Löffler, R. Schäublin, A. R. Studart, P. Uggowitzer
KurzbeschreibungGrundlegende Konzepte der Metallphysik, Keramik, Polymere und ihre Technologie.
LernzielAufbauend auf der Vorlesung Einführung in die Materialwissenschaft soll ein vertieftes Verständnis wichtiger Aspekte der Materialwissenschaft erlangt werden, mit besonderer Betonung der metallischen und keramischen Werkstoffe.
InhaltAm Beispiel der Metalle werden Thermodynamik und Phasendiagramme, Grenzflächen und Mikrostruktur, Diffusionskontrollierte Umwandlungen in Festkörpern und diffusionslose Umwandlungen besprochen. Am Beispiel der keramischen Werkstoffe werden die Grundregeln der ionischen und kovalenten chemischen Bindung, ihre Energien, der kristalline Aufbau, Beispiele wichtiger Strukturkeramiken und der Aufbau und die Eigenschaften oxidischer Gläser und Glaskeramiken vorgestellt.
SkriptFür Metalle siehe
Link

Für Keramiken siehe:
Link
LiteraturMetalle:
D. A. Porter, K. E. Easterling
Phase Transformations in Metals and Alloys - Second Edition
ISBN : 0-7487-5741-4
Nelson Thornes

Keramiken:
- Munz, D.; Fett, T: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection,
- Askeland & Phulé: Science and Engineering of Materials, 2003
- diverse CEN ISO Standards given in the slides
- Barsoum MW: Fundamentals of Ceramics:
- Chiang, Y.M.; Dunbar, B.; Kingery, W.D; Physical Ceramics, Principles für Ceramic Science and Engineering. Wiley , 1997
- Hannik, Kelly, Muddle: Transformation Toughening in Zirconia Containing Ceramics, J Am Ceram Soc 83 [3] 461-87 (2000)
- "High-Tech Ceramics: viewpoints and perspectives", ed G. Kostorz, Academic Press, 1989. Chapter 5, 59-101.


- "Brevieral Ceramics" published by the "Verband der Keramischen Industrie e.V.", ISBN 3-924158-77-0. partly its contents may be found in the internet @ Link or on our homepage

- Silicon-Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003,

- Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 3. Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986

- Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie, The Journal of Physical Chemistry, 1978

- Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975, Springer

- Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992

- "Formation of beta -Si sub 3 N sub 4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si sub 3 N sub 4 , AlN, Al sub 2 O sub 3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980.

- Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, Springer-Verlag, 1984, pp. 329, 1984 9.
Voraussetzungen / Besonderes- Im ersten Teil der Vorlesung werden die Grundlagen zu den Metallen vermittelt. Im zweiten Teil diese zu den keramischen Werkstoffen.
- Ein Teil der Vorlesung wird in Englisch gehalten.
401-2303-00LFunktionentheorie Information W6 KP3V + 2UR. Pandharipande
KurzbeschreibungKomplexe Funktionen einer komplexen Veränderlichen, Cauchy-Riemann Gleichungen, Cauchyscher Integralsatz, Singularitäten, Residuensatz, Umlaufzahl, analytische Fortsetzung, spezielle Funktionen, konforme Abbildungen. Riemannscher Abbildungssatz.
LernzielFähigkeit zum Umgang mit analytischen Funktion; insbesondre Anwendungen des Residuensatzes
LiteraturTh. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2333-00LMethoden der mathematischen Physik IW6 KP3V + 2UH. Knörrer
KurzbeschreibungFourierreihen. Lineare partielle Differentialgleichungen der mathematischen Physik. Fouriertransformation. Spezielle Funktionen und Eigenfunktionenentwicklungen. Distributionen. Ausgewählte Probleme aus der Quantenmechanik.
Lernziel
Voraussetzungen / BesonderesDie Einschreibung in die Übungsgruppen erfolgt online. Melden Sie sich im Laufe der ersten Semesterwoche unter echo.ethz.ch mit Ihrem ETH Account an. Der Übungsbetrieb beginnt in der zweiten Semesterwoche.
402-0205-00LQuantum Mechanics I Information W10 KP3V + 2UC. Anastasiou
KurzbeschreibungEinführung in die nicht-relativistische Einteilchen-Quantenmechanik. Diskussion grundlegender Ideen der Quantenmechanik, insbesondere Quantisierung klassischer Systeme, Wellenfunktionen und die Beschreibung von Observablen durch Operatoren auf einem Hilbertraum, und die Analyse von Symmetrien. Grundlegende Phänomene werden analysiert und durch generische Beispiele illustriert.
LernzielEinführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Störungstheorie) und generischer Beispiele und Anwendungen (gebunden Zustände, Tunneleffekt, Streutheorie in ein- und dreidimensionalen Problemen). Fähigkeit zur Lösung einfacher Probleme.
InhaltStichworte: Schrödinger-Gleichung, Formalismus der Quantenmechanik (Zustände, Operatoren, Kommutatoren, Messprozess), Symmetrien (Translation, Rotationen), Quantenmechanik in einer Dimension, Zentralkraftprobleme, Potentialstreuung, Störungstheorie, Variations-Verfahren, Drehimpuls, Spin, Drehimpulsaddition, Relation QM und klassische Physik.
LiteraturJ.J. Sakurai: Modern Quantum Mechanics
Lectures on Quantum Mechanics, S. Weinberg
402-0255-00LEinführung in die FestkörperphysikW10 KP3V + 2UK. Ensslin
KurzbeschreibungDie Vorlesung vermittelt die Grundlagen zur Physik kondensierter Materie und berührt einzelne Gebiete, welche später in Spezialvorlesungen eingehender behandelt werden. Im Stoff enthalten sind: Strukturen von Festkörpern, Interatomare Bindungen, elementare Anregungen, elektronische Eigenschaften von Isolatoren, Metalle, Halbleiter, Transportphänomene, Magnetismus, Supraleitung.
LernzielEinführung in die Physik der kondensierten Materie.
InhaltDie Vorlesung vermittelt die Grundlagen zur Physik kondensierter Materie und berührt einzelne Gebiete, welche später in Spezialvorlesungen eingehender behandelt werden. Im Stoff enthalten sind: Mögliche Formen von Festkörpern und deren Strukturen (Strukturklassifizierung und -bestimmung); Interatomare Bindungen; elementare Anregungen, elektronische Eigenschaften von Isolatoren, Metalle (klassische Theorie, quantenmechanische Beschreibung der Elektronenzustände, thermische Eigenschaften und Transportphänomene); Halbleiter (Bandstruktur, n/p-Typ Dotierungen, p/n-Kontakte); Magnetismus, Supraleitung
SkriptEin Skript wird verteilt.
LiteraturIbach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie
Voraussetzungen / BesonderesVoraussetzungen: Physik I, II, III wünschenswert
402-0263-00LAstrophysics I Information W10 KP3V + 2UH. M. Schmid
KurzbeschreibungThis introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
LernzielThe course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.
402-0595-00LSemiconductor Nanostructures Information W6 KP2V + 1UT. M. Ihn
KurzbeschreibungDer Kurs umfasst die Grundlagen der Halbleiternanostrukturen, z.B. Materialherstellung, Bandstrukturen, 'bandgap engineering' und Dotierung, Feldeffekttransistoren. Aufbauend auf zweidimensionalen Elektronengasen wird dann der Quantenhalleffekt besprochen, sowie die Physik der gängigen Halbleiternanostrukturen, d.h. Quantenpunktkontakte, Aharonov-Bohm Ringe und Quantendots, behandelt.
LernzielZiel der Vorlesung ist das Verständnis von vier Schlüsselphänomenen des Elektronentransports in Halbleiter-Nanostrukturen. Dazu zählen
1. der ganzzahlige Quantenhalleffekt
2. die Quantisierung des Leitwerts in Quantenpunktkontakten
3. der Aharonov-Bohm Effekt
4. der Coulomb-Blockade Effekt in Quantendots
Inhalt1. Einführung und Überblick
2. Halbleiterkristalle: Herstellung und Bandstrukturen
3. k.p-Theorie, Elektronendynamik in der Näherung der effektiven Masse
4. Envelope Funktionen, Näherung der effektiven Masse, Heterostrukturen und 'band engineering'
5. Herstellung von Nanostrukturen
6. Elektrostatik und Quantenmechanik von Halbleiternanostrukturen
7. Heterostrukturen und zweidimensionale Elektronengase
8. Drude Transport
9. Elektronentransport in Quantenpunktkontakten; Landauer-Büttiker Beschreibung
10. Ballistische Transportexperimente
11. Interferenzeffekte in Aharonov-Bohm Ringen
12. Elektron im Magnetfeld, Shubnikov-de Haas Effekt
13. Ganzzahliger Quantenhalleffekt
14. Quantendots, Coulombblockade
SkriptT. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.
LiteraturNeben dem Vorlesungsskript können folgende Bücher empfohlen werden:
1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)
2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997)
3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997)
4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003)
5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991)
6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)
Voraussetzungen / BesonderesDie Vorlesung richtet sich an alle Physikstudenten nach dem Bachelorabschluss. Grundlagen in der Festkörperphysik sind von Vorteil, ambitionierte Studenten im fünften Semester können der Vorlesung aber auch folgen. Die Vorlesung eignet sich auch für das Doktoratsstudium. Üblicherweise wird der Kurs auf Englisch gehalten werden.
402-2203-01LAllgemeine MechanikW7 KP4V + 2UN. Beisert
KurzbeschreibungBegriffliche und methodische Einführung in die theoretische Physik: Newtonsche Mechanik, Zentralkraftproblem, Schwingungen, Lagrangesche Mechanik, Symmetrien und Erhaltungssätze, Kreisel, relativistische Raum-Zeit-Struktur, Teilchen im elektromagnetischen Feld, Hamiltonsche Mechanik, kanonische Transformationen, integrable Systeme, Hamilton-Jacobi-Gleichung.
Lernziel
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle