Suchergebnis: Katalogdaten im Frühjahrssemester 2017

Umweltnaturwissenschaften Master Information
Vertiefung in Atmosphäre und Klima
Voraussetzungen
NummerTitelTypECTSUmfangDozierende
701-0412-00LKlimasystemeW3 KP2GR. Knutti, E. Fischer
KurzbeschreibungDie wichtigsten physikalischen Komponenten des Klimasystems und deren Wechselwirkungen werden eingeführt. Vor dem Hintergrund der Klimageschichte - und variabilität werden die Mechanismen des anthropogenen Klimawandels analysiert. Absolvierende des Kurses sind in der Lage, einfache Problemstellungen aus dem Bereich der Klimasysteme zu identifizieren und erläutern.
LernzielStudierende können:
- die wichtigsten physikalischen Komponenten des goblaben Klimasystems beschreiben und ihre Wechselwirkungen skizzieren.
- die Mechanismen des anthropogenen Klimawandels erklären.
einfache Problemstellungen aus dem Bereich der Klimasysteme identifizieren und erläutern.
SkriptKopien der Folien werden elektronisch zur Verfuegung gestellt.
LiteraturEine vollständige Literaturliste wird abgegeben. Insbesondere empfohlen sind:
- Hartmann, D., 2016: Global Physical Climatology. Academic Press, London, 485 pp.
- Peixoto, J.P. and A.H. Oort, 1992: Physics of Climate. American Institute of Physics, New York, 520 pp.
Voraussetzungen / BesonderesDozierende: Reto Knutti, mehrere Vorträge zu Spezialthemen von anderen Dozenten
Unterrichtssprache: deutsch
Sprache der Folien: englisch
Obligatorische Lehrveranstaltungen
Kolloquien
NummerTitelTypECTSUmfangDozierende
651-4095-01LColloquium Atmosphere and Climate 1 Information O1 KP1KH. Joos, C. Schär, D. N. Bresch, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, H. Wernli, M. Wild
KurzbeschreibungThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
LernzielThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Voraussetzungen / BesonderesTo acquire credit points for this colloquium, please visit the course's web page and sign up for one of the groups.
651-4095-02LColloquium Atmosphere and Climate 2 Information O1 KP1KH. Joos, C. Schär, D. N. Bresch, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, H. Wernli, M. Wild
KurzbeschreibungThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
LernzielThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Voraussetzungen / BesonderesTo acquire credit points for this colloquium, please visit the course's web page and sign up for one of the groups.
651-4095-03LColloquium Atmosphere and Climate 3 Information O1 KP1KH. Joos, C. Schär, D. N. Bresch, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, K. Steffen, H. Wernli, M. Wild
KurzbeschreibungThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
LernzielThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
Voraussetzungen / BesonderesTo acquire credit points for this colloquium, please visit the course's web page and sign up for one of the groups.
Seminare
NummerTitelTypECTSUmfangDozierende
701-1211-01LMaster's Seminar: Atmosphere and Climate 1O3 KP2SH. Joos, O. Stebler, F. Tummon, M. A. Wüest
KurzbeschreibungIn this seminar the knowledge exchange between you and the other students is promoted. You attend lectures on scientific writing and you train your scientific writing skills by writing a proposal for your Master thesis. You receive critical and constructive feedback through the review by your future supervisors.
LernzielScientific writing skills
How to effectively write a scientific proposal.
InhaltIn this seminar the knowledge exchange between you and the other students is promoted. You attend lectures on scientific writing and you train your scientific writing skills by writing a proposal for your MSc thesis. You receive critical and constructive feedback through the review by your future supervisors.
Voraussetzungen / BesonderesPlease register for this seminar 1 in the semester before writing your MSc thesis.
Attendance is mandatory.
701-1211-02LMaster's Seminar: Atmosphere and Climate 2 Information O3 KP2SH. Joos, O. Stebler, F. Tummon, M. A. Wüest
KurzbeschreibungThis seminar brings the students working on their Master thesis together. Students present their Master thesis project including an overview of the outline and the first scientific results. In this seminar presentation skills and visualization techniques are trained and methods of scientific project management are introduced and applied to your Master project.
LernzielThis seminar brings the students working on their MSc thesis together. Students present their MSc thesis project including an overview of the outline and the first scientific results. In this seminar presentation skills and visualization techniques are trained and methods of scientific project management are introduced and applied to your MSc project.
InhaltThis seminar brings the students working on their MSc thesis together. Students present their MSc thesis project including an overview of the outline and the first scientific results. In this seminar presentation skills and visualization techniques are trained and methods of scientific project management are introduced and applied to your MSc project.
Voraussetzungen / BesonderesPlease register for this seminar 2 in the semester in which you work on your MSc thesis.
Attendance is mandatory
Labor- und Feldkurse
NummerTitelTypECTSUmfangDozierende
701-1260-00LClimatological and Hydrological Field Work Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 30.
W2.5 KP5PL. Gudmundsson, D. Michel, S. I. Seneviratne
KurzbeschreibungPractical work using selected measurement techniques in meteorology and hydrology. The course consists of field work with different measuring systems to determine turbulence, radiation, soil moisture, evapotranspiration, discharge and the atmospheric state as well as of data analysis.
LernzielLearning of elementary concepts and practical experience with meteorological and hydrological measuring systems as well as data analysis.
InhaltPractical work using selected measurement techniques in meteorology and hydrology. The course consists of field work with different measuring systems to determine turbulence, radiation, soil moisture, evapotranspiration, discharge and the atmospheric state as well as of data analysis.
Voraussetzungen / BesonderesThe course takes place in the hydrological research catchment Rietholzbach (field work) and at ETH (data analysis) as a block course.
701-1262-00LAtmospheric Chemistry Lab WorkW2.5 KP5PC. Marcolli, U. Krieger, T. Peter
KurzbeschreibungEs werden Versuche zum Gefrieren von Wassertröpfchen und zur Entstehung von Eiswolken durchgeführt. Dazu werden Wasser-in-Öl Emulsionen hergestellt und in einem DSC (differential scanning calorimeter) abgekühlt. Die gemessenen Gefriertemperaturen werden in den Kontext der Wolkenbildung in der Atmosphäre gestellt.
LernzielDieses Modul bietet die Möglichkeit, anhand von atmosphärenchemisch relevanten Experimenten Einblick in das praktische Arbeiten im Labor zu gewinnen.
InhaltCirrus clouds play an important role in the radiative budget of the Earth. Due to scattering and absorption of the solar as well as terrestrial radiation the cirrus cloud cover may influence significantly the Earth climate. How the cirrus clouds exactly form, is still unknown. Ice particles in cirrus clouds may form by homogeneous ice nucleation from liquid aerosols or via heterogeneous ice nucleation on solid ice nuclei (IN). The dihydrate of oxalic acid (OAD) acts as a heterogeneous ice nucleus, with an increase in freezing temperature between 2 and 5K depending on solution composition. In several field campaigns, oxalic acid enriched particles have been detected in the upper troposphere with single particle aerosol mass spectrometry. Simulations with a microphysical box model indicate that the presence of OAD may reduce the ice particle number density in cirrus clouds by up to ~50% when compared to exclusively homogeneous cirrus formation without OAD.
The goal of this atmospheric chemistry lab work is to expand the knowledge about the influence of oxalic acid in different aqueous solution systems for the heterogeneous ice nucleation process. Experiments of emulsified aqueous solutions containing oxalic acid will be performed with a differential scanning calorimeter (DSC, TA Instruments Q10). Water-in-oil emulsions contain a high number of micrometer-sized water droplets. Each droplet freezes independently which allows the measurement of homogeneous freezing for droplets without heterogeneous IN and heterogeneous freezing in the presence of an IN. OAD is formed in-situ in a first freezing cycle and will act as an IN in a second freezing cycle. This experiment will be performed in the presence of different solutes. In general, the presence of a solute leads to a decrease of the freezing temperature. However, also more specific interactions with oxalic acid are possible so that e.g. the formation of OAD is inhibited.
In the atmospheric chemistry lab work experiments, emulsified aqueous oxalic acid solutions are prepared and investigated in the DSC during several freezing cycles. The onset of freezing is evaluated. Freezing onsets in the presence and absence of OAD are compared. This is done for pure oxalic acid solutions and oxalic acid solutions containing a second solute (e.g. another dicarboxylic acid). The quality of the emulsions is checked in an optical microscope.
SkriptUnterlagen zum Versuch werden während des Praktikums abgegeben
LiteraturOxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect,
B. Zobrist C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter
Atmos. Chem. Phys., 6, 3115–3129, 2006.
Voraussetzungen / BesonderesDieses Modul kann von maximal 8 Studierenden besucht werden. Der praktische Teil wird in zweier, max. dreier Gruppen durchgeführt.
701-1264-00LAtmospheric Physics Lab Work Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 18.
W2.5 KP5PZ. A. Kanji
KurzbeschreibungVersuche aus den Bereichen Atmosphärenphysik, Meteorologie und Aerosolphysik, die im Labor und teilweise im Freien durchgeführt werden.
LernzielDas Praktikum bietet Einblicke in verschiedene Aspekte der Atmosphärenphysik, die anhand von Experimenten erarbeitet werden. Es werden dabei Kenntnisse über Luftbewegungen, die (windabhängige) Verdampfung und Abkühlung, sowie die Analyse von Feinstaubpartikeln und deren Einfluss auf die an der Erde gemessene Sonneneinstrahlung erlangt.
InhaltDetails zum Praktikum sind auf der Webseite zum Praktikum (siehe link) zu erfahren.
SkriptVersuchsanleitungen auf der Webseite
Voraussetzungen / BesonderesAus einer Liste von 5 Versuchen müssen 4 Versuche durchgeführt werden. Die Versuche werden in Zweiergruppen bearbeitet.
Zu Beginn findet eine Einführungsveranstaltung statt.
701-1266-00LWeather Discussion Belegung eingeschränkt - Details anzeigen
Limited number of participants.
Preference will be given to students on the masters level.

Prerequisites: Basic knowledge in meteorology is required for this class, students are advised to take courses 702-0473-00L and/or 701-1221-00L before attending this course.
W2.5 KP2PH. Wernli
KurzbeschreibungThis three-parts course includes: (i) concise units to update the students knowledge about key aspects of mid-latitude weather systems and numerical weather prediction, (ii) a concrete application of this knowledge to predict and discuss the "weather of the week", and (iii) an in-depth case study analysis, performed in small groups, of a remarkable past weather event.
LernzielStudents will learn how to elaborate a weather prediction and to cope with uncertainties of weather (probabilistic) prediction models. They will also learn how to apply theoretical concepts from other lecture courses on atmospheric dynamics to perform a detailed case study of a specific weather event, using state-of-the-art observational and model-derived products and datasets.
Wettersysteme und atmosphärische Dynamik
NummerTitelTypECTSUmfangDozierende
701-1216-00LNumerical Modelling of Weather and Climate Information W4 KP3GU. Lohmann, L. Schlemmer
KurzbeschreibungThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
LernzielThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
InhaltThe course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction.

Hands-on experience with simple models will be acquired in the tutorials.
SkriptSlides and lecture notes will be made available at
Link
LiteraturList of literature will be provided.
Voraussetzungen / BesonderesPrerequisites: to follow this course, you need some basic background in atmospheric science, numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L) as well as experience in programming
701-1224-00LMesoscale Atmospheric Systems - Observation and ModellingW2 KP2VH. Wernli, S. Pfahl
KurzbeschreibungMesoscale meteorology focusing on processes relevant for the evolution of precipitation systems. Discussion of empirical and mathematical-physical models for, e.g., fronts and convective storms. Consideration of oceanic evaporation, transport and the associated physics of stable water isotopes. Introduction to weather radar being the widespread instrument for observing mesoscale precipitation.
LernzielBasic concepts of observational and theoretical mesoscale meteorology, including precipitation measurements and radar. Knowledge about the interpretation of radar images. Understanding of processes leading to the formation of fronts and convective storms, and basic knowledge on ocean evaporation and the physics of stable water isotopes.
701-1226-00LInter-Annual Phenomena and Their Prediction Information W2 KP2GC. Appenzeller
KurzbeschreibungThis course provides an overview of the current ability to understand and predict short-term climate variability in the tropical and extra-tropical region and provides insights on how operational weather and climate services are organized.
LernzielStudents will acquire an understanding of the key atmosphere and ocean processes involved, will gain experience in analyzing and predicting short-term climate variability and learn how operational weather and climate services are organised and how scientific developments can improve these services.
InhaltThe course covers the following topics:

Part 1:
- a brief introduction into short-term climate variability and some basic concepts
- a brief review of climate data and the statistical concepts used for analysing climate variability (e.g. correlation analysis, teleconnection maps, EOF analysis)

Part 2:
- inter-annual variability in the tropical region (e.g. ENSO, MJO)
- inter-annual variability in the extra-tropical region (e.g. Blocking, NAO, PNA, regimes)

Part 3:
- prediction of short-term climate variability (statistical methods, ensemble prediction systems. weekly to seasonal forecasts)
- verification methods for probabilistic forecast systems

Part 4:
- challenges for operational weather and climate services
- weather and climate extremes
- early warning systems
- a visit to the forecasting centre of MeteoSwiss
SkriptA pdf version of the slides will be available at
Link
LiteraturReferences are given during the lecture.
701-1228-00LCloud Dynamics: Hurricanes Information W4 KP3GU. Lohmann
KurzbeschreibungHurricanes are among the most destructive elements in Atmospheric science. This lecture will discuss the requirements for their formation, longevity, damage potential and their relationship to global warming. It also distinguishes hurricanes from thunderstorms and tornadoes.
LernzielAt the end of this course students will be able to distinguish tropical cyclones from extratropical thunderstorms and cyclones, project how tropical cyclones change in a warmer climate based on their physics and evaluate different tropical cyclone modification ideas.
SkriptSlides will be made available
LiteraturHouze, R. A., Cloud Dynamics, Academic Press, 1993
Lin, Y.-L., Mesoscale Dynamics, Cambridge Univ. Press, 2010

A literature list can be found here: Link
Voraussetzungen / BesonderesAt least one introductory lecture in Atmospheric Science or Instructor's consent.
Klimaprozesse und -wechselwirkungen
NummerTitelTypECTSUmfangDozierende
701-1216-00LNumerical Modelling of Weather and Climate Information W4 KP3GU. Lohmann, L. Schlemmer
KurzbeschreibungThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
LernzielThe guiding principle of this lecture is that students can understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes.
InhaltThe course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction.

Hands-on experience with simple models will be acquired in the tutorials.
SkriptSlides and lecture notes will be made available at
Link
LiteraturList of literature will be provided.
Voraussetzungen / BesonderesPrerequisites: to follow this course, you need some basic background in atmospheric science, numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L) as well as experience in programming
701-1232-00LRadiation and Climate ChangeW3 KP2GM. Wild, W. Ball
KurzbeschreibungThis lecture focuses on the prominent role of radiation in the energy balance of the Earth and in the context of past and future climate change.
LernzielThe aim of this course is to develop a thorough understanding of the fundamental role of radiation in the context of climate change.
InhaltThe course will cover the following topics:
Basic radiation laws; sun-earth relations; the sun as driver of climate change (faint sun paradox, Milankovic ice age theory, solar cycles); radiative forcings in the atmosphere: aerosol, water vapour, clouds; radiation balance of the Earth (satellite and surface observations, modeling approaches); anthropogenic perturbation of the Earth radiation balance: greenhouse gases and enhanced greenhouse effect, air pollution and global dimming; radiation-induced feedbacks in the climate system (water vapour feedback, snow albedo feedback); climate model scenarios under various radiative forcings.
SkriptSlides will be made available, lecture notes for part of the course
LiteraturAs announced in the course
701-1252-00LClimate Change Uncertainty and Risk: From Probabilistic Forecasts to Economics of Climate Adaptation Belegung eingeschränkt - Details anzeigen
Number of participants limited to 36.
W3 KP2V + 1UD. N. Bresch, R. Knutti
KurzbeschreibungThe course introduces the concepts of predictability, probability, uncertainty and probabilistic risk modelling and their application to climate modeling and the economics of climate adaptation.
LernzielStudents will acquire knowledge in uncertainty and risk quantification (probabilistic modelling) and an understanding of the economics of climate adaptation. They will become able to construct their own uncertainty and risk assessment models (MATLAB), hence basic understanding of scientific programming forms a prerequisite of the course.
InhaltThe first part of the course covers methods to quantify uncertainty in detecting and attributing human influence on climate change and to generate probabilistic climate change projections on global to regional scales. Model evaluation, calibration and structural error are discussed. In the second part, quantification of risks associated with local climate impacts and the economics of different baskets of climate adaptation options are assessed – leading to informed decisions to optimally allocate resources. Such pre-emptive risk management allows evaluating a mix of prevention, preparation, response, recovery, and (financial) risk transfer actions, resulting in an optimal balance of public and private contributions to risk management, aiming at a more resilient society.
The course provides an introduction to the following themes:
1) basics of probabilistic modelling and quantification of uncertainty from global climate change to local impacts of extreme events
2) methods to optimize and constrain model parameters using observations
3) risk management from identification (perception) and understanding (assessment, modelling) to actions (prevention, preparation, response, recovery, risk transfer)
4) basics of economic evaluation, economic decision making in the presence of climate risks and pre-emptive risk management to optimally allocate resources
SkriptPowerpoint slides will be made available
Literatur-
Voraussetzungen / BesonderesHands-on experience with probabilistic climate models and risk models will be acquired in the tutorials; hence basic understanding of scientific programming forms a prerequisite of the course. Basic understanding of the climate system, e.g. as covered in the course 'Klimasysteme' is required.

Examination: graded tutorials during the semester (benotete Semesterleistung)
Atmosphärische Zusammensetzung und Kreisläufe
NummerTitelTypECTSUmfangDozierende
701-1234-00LTropospheric ChemistryW3 KP2GA. Prévôt, F. Dentener
KurzbeschreibungThe course gives an overview tropospheric chemistry, which is based on laboratory studies, measurements and numerical modelling. The topics include aerosol, photochemistry, emissions and depositions. The lecture covers urban-regional-to-global scale issues, as well as fundamentals of the atmospheric nitrogen, sulfur and CH4 cycles and their contributions to aerosol and oxidant formation.
LernzielBased on the presented material the students are expected to understand the most relevant processes responsible for the anthropogenic disturbances of tropospheric chemical composition. The competence of synthesis of knowledge will be improved by student's presentations. These presentations relate to a particular actual problem selected by the canidates.
InhaltStarting from the knowledge acquired in lecture 701-0471, the course provides a more profound view on the the chemical and dynamical process governing the composition and impacts of air pollutant like aerosol and ozone, at the earth's surface and the free troposphere.
Specific topics are offered are: laboratory and ambient measurements in polluted and pristine regions, the determination of emissions of a variety of components, numerical modelling across scales, regional air pollution - aerosol, and photooxidatant in relation to precursor emissions,
impacts (health, vegetation, climate), the global cycles of tropospheric ozone, CH4, sulfur and nitrogen components.
SkriptLecture presentations are available for download.
LiteraturD. Jacob, Introduction to Atmospheric Chemistry Link

Mark Z. Jacobson: Fundamentals of Atmospheric Modelling, Cambridge University Press

John Seinfeld and Spyros Pandis, Atmosperic Chemistry and Physics, from air pollution to Climate Change, Wiley, 2006.
Voraussetzungen / BesonderesThe basics in physical chemsitry are required and an overview equivalent to the bachelor course in atmospheric chemsitry (lecture 701-0471-01) is expected.
701-1238-00LAdvanced Field and Lab Studies in Atmospheric Chemistry and Climate Belegung eingeschränkt - Details anzeigen
Limited number of participants.
W3 KP2PU. Krieger
KurzbeschreibungIn the course 701-0460-00 P we offer the opportunity to carry out atmospheric physical and chemical experiments. The present course will be held in connection with this practical course. An individual assignment of a specific topic will be made for interested students who can acquire knowledge in experimental, instrumental, or numerical aspects of atmospheric chemistry.
LernzielIn the course 701-0460-00 P, Practical training in atmosphere and climate, we offer the opportunity to carry out atmospheric physical and chemical experiments. The present course will be held in connection with this practical course. An individual assignment of a specific topic will be made for interested students who can acquire knowledge in experimental, instrumental, numerical or theoretical aspects of atmospheric chemistry.

This course is addressed to students who have not attended the practical course 701-0460-00 P during their Bachelor studies, but want to gain knowledge in field work connected to atmospheric chemistry. The specific topic to work on may be chosen based on individual interests and resources available.
Voraussetzungen / BesonderesIt is mandatory for interested students to contact the instructor before the term starts, so that individual assignments can be made/planned for.

The maximum number of participants for this course will be limited depending on resources available.
701-1317-00LGlobal Biogeochemical Cycles and Climate Information W3 KP3GN. Gruber, M. Vogt
KurzbeschreibungThe human-induced emissions of carbon dioxide has led to atmospheric CO2 concentrations that Earth likely has no’t seen for the last 30 million years. This course aims to investigate and understand the impact of humans on Earth's biogeochemical cycles with a focus on the carbon cycle and its interaction with the physical climate system for the past, the present, and the future.
LernzielThis course aims to investigate the nature of the interaction between biogeochemical cycles on land and in the ocean with climate and how this interaction has evolved over time and will change in the future. Students are expected to participate actively in the course, which includes the critical reading of the pertinent literature and class presentations.
InhaltTopics discussed include: The anthropogenic perturbation of the global carbon cycle and climate. Response of land and oceanic ecosystems to past and future global changes; Interactions between biogeochemical cycles on land and in the ocean; Biogeochemical processes controlling carbon dioxide and oxygen in the ocean and atmosphere on time-scales from a few years to a few hundred thousand years.
SkriptSarmiento & Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press. Additional handouts will be provided as needed. see website: Link
LiteraturSarmiento & Gruber (2006), Ocean Biogeochemical Dynamics, Princeton University Press, 526pp.

MacKenzie, F. T. (1999), Global biogeochemical cycles and the physical climate system, Global Change Instruction Program, UCAR, Boulder, CO, 69pp.

W. H. Schlesinger (1997), Biogeochemistry: An Analysis of Global Change, Academic Press.

Original literature.
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle