Suchergebnis: Katalogdaten im Herbstsemester 2016

Rechnergestützte Wissenschaften Bachelor Information
Bachelor-Studium (Studienreglement 2012)
Basisjahr
Lerneinheiten des Basisjahres sind im Abschnitt Bachelor-Studium (Studienreglement 2016) - Obligatorische Fächer des Basisjahres zu finden.
Grundlagenfächer
Block G1
NummerTitelTypECTSUmfangDozierende
401-0353-00LAnalysis IIIO4 KP2V + 1UE. Kowalski
KurzbeschreibungIn dieser Lehrveranstaltung werden Probleme der angewandten Analysis behandelt, speziell ausgerichtet auf die Bedürfnisse der Elektrotechniker. Dazu gehört vor allem das Studium der einfachsten Fälle der drei Grundtypen von partiellen Differentialgleichungen zweiten Grades: Laplace-Gleichung, Wärmeleitungsgleichung und Wellengleichung.
Lernziel
Inhalt1.) Klassifizierung von PDE's
- linear, quasilinear, nicht-linear
- elliptisch, parabolisch, hyperbolisch

2.) Quasilineare PDE
- Methode der Charakteristiken (Beispiele)

3.) Elliptische PDE
- Bsp: Laplace-Gleichung
- Harmonische Funktionen, Maximumsprinzip, Mittelwerts-Formel.
- Methode der Variablenseparation.

4.) Parabolische PDE
- Bsp: Wärmeleitungsgleichung
- Bsp: Inverse Wärmeleitungsgleichung
- Methode der Variablenseparation

5.) Hyperbolische PDE
- Bsp: Wellengleichung
- Formel von d'Alembert in (1+1)-Dimensionen
- Methode der Variablenseparation

6.) Green'sche Funktionen
- Rechnen mit der Dirac-Deltafunktion
- Idee der Green'schen Funktionen (Beispiele)

7.) Ausblick auf numerische Methoden
- 5-Punkt-Diskretisierung des Laplace-Operators (Beispiele)
LiteraturY. Pinchover, J. Rubinstein, "An Introduction to Partial Differential Equations", Cambridge University Press (12. Mai 2005)

Zusätzliche Literatur:
Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, Kap. 8, 11, 16 (sehr gutes Buch, als Referenz zu benutzen)
Norbert Hungerbühler, "Einführung in die partiellen Differentialgleichungen", vdf Hochschulverlag AG an der ETH Zürich.
G. Felder:Partielle Differenzialgleichungen.
https://people.math.ethz.ch/~felder/PDG/
Voraussetzungen / BesonderesVoraussetzungen: Analysis I und II, Fourier Reihen (Komplexe Analysis)
402-0811-00LProgramming Techniques for Scientific Simulations IO5 KP4GM. Troyer
KurzbeschreibungThis lecture provides an overview of programming techniques for scientific simulations. The focus is on advances C++ programming techniques and scientific software libraries. Based on an overview over the hardware components of PCs and supercomputer, optimization methods for scientific simulation codes are explained.
Lernziel
401-0663-00LNumerical Methods for CSE Information O7 KP4V + 2UR. Hiptmair
KurzbeschreibungThe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the
techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt1. Direct Methods for linear systems of equations
2. Least Squares Techniques
3. Data Interpolation and Fitting
4. Filtering Algorithms
8. Approximation of Functions
9. Numerical Quadrature
10. Iterative Methods for non-linear systems of equations
11. Single Step Methods for ODEs
12. Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to participants:

Lecture document: https://people.math.ethz.ch/~grsam/HS16/NumCSE/NumCSE16.pdf

Lecture Git repository: https://gitlab.math.ethz.ch/NumCSE/NumCSE

Tablet classroom notes: http://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/NCSE16_Notes/

Lecture recording: http://www.video.ethz.ch/lectures/d-math/2016/autumn/401-0663-00L.html

Homework problems: https://people.math.ethz.ch/~grsam/HS16/NumCSE/NCSEProblems.pdf
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesThe course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.
Block G2
NummerTitelTypECTSUmfangDozierende
401-0603-00LStochastikO4 KP2V + 1UM. H. Maathuis
KurzbeschreibungDie Vorlesung deckt folgende Themenbereiche ab: Zufallsvariablen, Wahrscheinlichkeit und Wahrscheinlichkeitsverteilungen, gemeinsame und bedingte Wahrscheinlichkeiten und Verteilungen, das Gesetz der Grossen Zahlen, der zentrale Grenzwertsatz, deskriptive Statistik, schliessende Statistik, Statistik bei normalverteilten Daten, Punktschätzungen, und Vergleich zweier Stichproben.
LernzielKenntnis der Grundlagen der Wahrscheinlichkeitstheorie und Statistik.
InhaltEinführung in die Wahrscheinlichkeitstheorie, einige Grundbegriffe der mathematischen Statistik und Methoden der angewandten Statistik.
SkriptVorlesungsskript
LiteraturVorlesungsskript
252-0834-00LInformationssysteme für Ingenieure Information O4 KP2V + 1UR. Marti
KurzbeschreibungGrundlagen von Informationssystemen aus Anwendersicht. Im Fokus sind strukturierte Daten: relationale Datenbanken, Daten-Sprache SQL, Entwurf relationaler Datenbanken. Weitere Themen: Information Retrieval (Suche von Dokumenten), mit Bewertung von Relevanz und Autorität der Dokumente bezügl. Freitext-Anfragen; XML als Format für Datenaustausch; Charakterisierung und Verarbeitung von "Big Data"
LernzielNach dem Besuch der Lehrveranstaltung sollten Studierende in der Lage sein

1. nicht-triviale Anfragen auf bestehenden relationalen Datenbanken mit Hilfe von (Entry-Level) SQL beantworten zu können, sowie neue Inhalte hinzuzufügen bzw. bestehende Inhalte verändern und löschen zu können,

2. Sachverhalte eines Ausschnitts der realen Welt in einem Gegenstand-Beziehungsmodell (Entity-Relationship Model) zu formalisieren und daraus eine zweckmässige Struktur für eine relationale Datenbank herzuleiten

3. die Funktionsweise und Dienstleistungen eines Datenbanksystems in groben Zügen zu erklären

4. die Funktionsweise von Web Suchmaschinen wie Google in groben Zügen zu kennen

5. die wichtigsten Konzepte der Strukturierung von XML-Dokumenten sowie Anfragen auf XML-Dokumenten zu kennen und anzuwenden

6. die Charakteristiken von "Big Data" aufzuzählen sowie Grundzüge ihrer Verarbeitung zu kennen
InhaltDie Lehrveranstaltung vermittelt Grundlagen und Konzepte von Informationssystemen aus der Sicht eines Anwenders.

Im Zentrum stehen relationale Datenbanksysteme, die Abfrage- und Datenmanipulationssprache SQL, sowie der Entwurf bzw. die Strukturierung relationaler Datenbanken. Dieser Stoff wird auch in praktischen Übungen vertieft.

Weitere Themen sind der Umgang mit unstrukturierten und semistrukturierten Daten, die Integration von Daten aus verschiedenen autonomen Informationssystemen, sowie eine Übersicht der Architektur von Datenbanksystemen.

Inhalt:
1. Einleitung.
2. Das Relationenmodell.
3. Die Abfrage- und Datenmanipulationssprache SQL.
4. Entwurf relationaler Datenbanken mit Hilfe von Entity-Relationship Diagrammen. Grundideen der Normalisierung von Relationen.
5. Architektur relationaler Datenbanksysteme.
6. Information Retrieval: Suche von (Text-) Dokumenten. Indexing, Stopwort-Elimination und Stemming. Boole'sches Retrieval und das Verktorraum-Modell.
7. Web Information Retrieval: Web-Crawling. Ausnutzen der Web-Links zwischen Web-Seiten (Page Ranking). Das Zusammenspiel von Crawling, klassischem Information Retrieval und Page Ranking.
8. Modellierung semi-strukturierter Daten mit XML und einfache Anfragen mit XPath und XQuery.
9. Zugriff auf SQL-Datenbanken aus Programmen, Transaktionen.
10. Neuere Entwicklungen: "Big Data", CAP Theorem, Hadoop (HDFS als verteiltes File System, Map-Reduce als Verarbeitungskonzept)
LiteraturVorlesungsunterlagen (PowerPoint Folien, teilweise auch zusätzlicher Text) werden auf der Web-Site publiziert. Der Kauf eines Buches wird nicht vorausgesetzt.

Das Buch "Datenbanksysteme: Eine Einführung, 9. Auflage" von Alfons Kemper und André Eickler, erschienen im Oldenbourg Verlag, 2013, enthält den behandelten Stoff, und vieles mehr (Umfang: 848 Seiten!). Die Vorlesung ist jedoch nur teilweise auf das Buch abgestimmt.

Als englischsprachiges Werk kann z.B.

A. Silberschatz, H.F. Korth, S. Sudarshan:
Database System Concepts, 6th Edition, McGraw-Hill, 2010.

empfohlen werden (Umfang: 1349 Seiten).
Voraussetzungen / BesonderesVoraussetzung:
Elementare Kenntnisse von Mengenlehre und logischen Ausdrücken.
Kenntnisse und minimale Programmiererfahrung in einer Programmiersprache wie z.B. Pascal, C, C++, Java, Python.
401-0647-00LIntroduction to Mathematical Optimization Information O5 KP2V + 1UD. Adjiashvili
KurzbeschreibungIntroduction to basic techniques and problems in mathematical optimization, and their applications to problems in engineering.
LernzielThe goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering.
InhaltTopics covered in this course include:
- Linear programming (simplex method, duality theory, shadow prices, ...).
- Basic combinatorial optimization problems (spanning trees, network flows, knapsack problem, ...).
- Modelling with mathematical optimization: applications of mathematical programming in engineering.
LiteraturInformation about relevant literature will be given in the lecture.
Voraussetzungen / BesonderesThis course is meant for students who did not already attend the course "Mathematical Optimization", which is a more advance lecture covering similar topics and more.
Block G3
Die Lehrveranstaltungen von Block G3 finden im Frühjahrssemester statt.
Block G4
Studierende, die aus einem anderen ETH-Studiengang in das zweite Studienjahr des Bachelor-Studiengangs RW übergetreten sind und deren Basisprüfung das Fach "Physik I" nicht umfasst, müssen im Prüfungsblock G4 anstelle von "Physik II" (im Frühjahrssemester) den Jahreskurs "Physik I und II" (402-0043-00L und 402-0044-00L) aus dem Bachelor-Studiengang Chemie belegen und die entsprechende Prüfung ablegen.
NummerTitelTypECTSUmfangDozierende
402-0043-00LPhysik IW4 KP3V + 1UT. Esslinger
KurzbeschreibungEinführung in die Denk- und Arbeitsweise in der Physik unter Zuhilfenahme von Demonstrationsexperimenten: Mechanik von Massenpunkten und starren Körpern, Schwingungen und Wellen.
LernzielVermittlung der physikalischen Denk- und Arbeitsweise und Einführung in die Methoden in einer experimentellen Wissenschaft. Die Studenten und Studentinnen soll lernen, physikalische Fragestellungen im eigenen Wissenschaftsbereich zu identifizieren, zu kommunizieren und zu lösen.
InhaltMechanik (Bewegung, Newtonsche Axiome, Arbeit und Energie, Impulserhaltung, Drehbewegungen, Gravitation, deformierbare Körper)
Schwingungen und Wellen (Schwingungen, mechanische Wellen, Akustik)
SkriptDie Vorlesung richtet sich nach dem Lehrbuch "Physik" von Paul A. Tipler.
LiteraturTipler, Paul A., Mosca, Gene, Physik (für Wissenschaftler und Ingenieure), Springer Spektrum
Voraussetzungen / BesonderesVoraussetzungen: Mathematik I & II
Kernfächer
NummerTitelTypECTSUmfangDozierende
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IO4 KP4GM. Troyer, P. Chatzidoukas
KurzbeschreibungThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
LernzielIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
InhaltProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Skripthttp://www.cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/615-hpcse1
Class notes, handouts
Vertiefungsgebiete
Astrophysik
NummerTitelTypECTSUmfangDozierende
401-7851-00LTheoretical Astrophysics (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: AST512

Beachten Sie die Einschreibungstermine an der UZH: http://www.uzh.ch/studies/application/mobilitaet.html
W10 KP4V + 2UR. Teyssier
KurzbeschreibungRadiative processes in the interstellar medium; stellar structure and evolution; supernovae; white dwarfs; neutron stars; black holes; planet formation
Lernziel
Literatur(1) "Formation of stars" (S. Stahler and F. Palla - Wiley editions, this is the book on which about half of the classes will be based and photocopies will be organized during first lecture)
(2) "Radiative processes in astrophysics" (R. Ribycki and A. Lightman)
(3) "The Physics of Stars" (A.C. Philllips)
(4) "Black Holes, White Dwarfs and Neutron Stars: The physics of compact objects" (S. Shapiro and S.A. Teukolski).
Additionally PowerPoint slides will be prepared by the lecturer on these and extra topics (e.g. planet formation).
Voraussetzungen / BesonderesPrerequisites: Elementary atomic physics, thermodynamics, mechanics, fluid dynamics.
Introduction to astrophysics (preferred but not obligatory).
401-7855-00LComputational Astrophysics (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: AST245

Beachten Sie die Einschreibungstermine an der UZH: http://www.uzh.ch/studies/application/mobilitaet.html
W6 KP2VL. M. Mayer
KurzbeschreibungAcquire knowledge of main methodologies for computer-based models of astrophysical systems,the physical equations behind them, and train such knowledge with simple examples of computer programmes
LernzielAcquire knowledge of main methodologies for computer-based models of astrophysical systems,the physical equations behind them, and train such knowledge with simple examples of computer programmes
Inhalt1. Integration of ODE, Hamiltonians and Symplectic integration techniques, time adaptivity, time reversibility
2. Large-N gravity calculation, collisionless N-body systems and their simulation
3. Fast Fourier Transform and spectral methods in general
4. Eulerian Hydrodynamics: Upwinding, Riemann solvers, Limiters
5. Lagrangian Hydrodynamics: The SPH method
6. Resolution and instabilities in Hydrodynamics
7. Initial Conditions: Cosmological Simulations and Astrophysical Disks
8. Physical Approximations and Methods for Radiative Transfer in Astrophysics
LiteraturGalactic Dynamics (Binney & Tremaine, Princeton University Press),
Computer Simulation using Particles (Hockney & Eastwood CRC press),
Targeted journal reviews on computational methods for astrophysical fluids (SPH, AMR, moving mesh)
Voraussetzungen / BesonderesSome knowledge of UNIX, scripting languages (see www.physik.uzh.ch/lectures/informatik/python/ as an example), some prior experience programming, knowledge of C, C++ beneficial
Atmosphärenphysik
NummerTitelTypECTSUmfangDozierende
701-0023-00LAtmosphäre Information W3 KP2VH. Wernli, E. Fischer, T. Peter
KurzbeschreibungGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
LernzielVerständnis grundlegender physikalischer und chemischer Prozesse in der Atmosphäre. Kenntnis über die Mechanismen und Zusammenhänge von: Wetter - Klima, Atmosphäre - Ozeane - Kontinente, Troposphäre - Stratosphäre. Verständnis von umweltrelevanten Strukturen und Vorgängen in sehr unterschiedlichem Massstab. Grundlagen für eine modellmässige Darstellung komplexer Zusammenhänge in der Atmosphäre.
InhaltGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
SkriptSchriftliche Unterlagen werden abgegeben.
Literatur- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
Chemie
NummerTitelTypECTSUmfangDozierende
529-0004-00LComputer Simulation in Chemistry, Biology and Physics Belegung eingeschränkt - Details anzeigen W7 KP4GP. H. Hünenberger
KurzbeschreibungMolecular models, Force fields, Boundary conditions, Electrostatic interactions, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.

For more information: www.csms.ethz.ch/education/CSCBP
LernzielIntroduction to computer simulation of (bio)molecular systems, development of skills to carry out and interpret computer simulations of biomolecular systems.
InhaltMolecular models, Force fields, Spatial boundary conditions, Calculation of Coulomb forces, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.
SkriptAvailable (copies of powerpoint slides distributed before each lecture)
LiteraturSee: www.csms.ethz.ch/education/CSCBP
Voraussetzungen / BesonderesSince the exercises on the computer do convey and test essentially different skills as those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam.

For more information about the lecture: www.csms.ethz.ch/education/CSCBP
Fluiddynamik
NummerTitelTypECTSUmfangDozierende
151-0103-00LFluiddynamik IIW3 KP2V + 1UP. Jenny
KurzbeschreibungEbene Potentialströmungen: Stromfunktion und Potential, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
LernzielErweiterung der Grundlagen der Fluiddynamik.
Grundbegriffe, Phänomene und Gesetzmässigkeiten von drehungsfreien, drehungsbehafteten und eindimensionalen kompressiblen Strömungen vermitteln.
InhaltEbene Potentialströmungen: Stromfunktion und Potential, komplexe Darstellung, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeldynamik und Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
Skriptja
(Siehe auch untenstehende Information betreffend der Literatur.)
LiteraturP.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Voraussetzungen / BesonderesAnalysis I/II, Fluiddynamik I, Grundbegriffe der Thermodynamik (Thermodynamik I).

Für die Formulierung der Grundlagen der Fluiddynamik werden unabdingbar Begriffe und Ergebnisse aus der Mathematik benötigt. Erfahrungsgemäss haben einige Studierende damit Schwierigkeiten.
Es wird daher dringend empfohlen, insbesondere den Stoff über
- elementare Funktionen (wie sin, cos, tan, exp, deren Umkehrfunktionen, Ableitungen und Integrale) sowie über
- Vektoranalysis (Gradient, Divergenz, Rotation, Linienintegral ("Arbeit"), Integralsätze von Gauss und von Stokes, Potentialfelder als Lösungen der Laplace-Gleichung) zu wiederholen. Ferner wird der Umgang mit
- komplexen Zahlen und Funktionen (siehe Anhang des Skripts Analysis I/II Teil C und Zusammenfassung im Anhang C des Skripts Fluiddynamik) benötigt.

Literatur z.B.: U. Stammbach: Analysis I/II, Skript Teile A, B und C.
Systems and Control
NummerTitelTypECTSUmfangDozierende
227-0103-00LRegelsysteme Information W6 KP2V + 2UF. Dörfler
KurzbeschreibungStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
LernzielStudy of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems.
InhaltProcess automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation.
LiteraturK. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.
R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007.
G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010.
J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014.
J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014.
Voraussetzungen / BesonderesPrerequisites: Signal and Systems Theory II.

MATLAB is used for system analysis and simulation.
227-0045-00LSignal- und Systemtheorie IW4 KP2V + 2UH. Bölcskei
KurzbeschreibungSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
LernzielEinführung in die mathematische Signaltheorie und Systemtheorie.
InhaltSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
SkriptVorlesungsskriptum, Übungsskriptum mit Lösungen.
Robotik
NummerTitelTypECTSUmfangDozierende
151-0601-00LTheory of Robotics and Mechatronics Information W4 KP3GP. Korba, S. Stoeter, B. Nelson
KurzbeschreibungThis course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. It’s a requirement for the Robotics Vertiefung and for the Masters in Mechatronics and Microsystems.
LernzielRobotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. This course is a requirement for the Robotics Vertiefung and for the Masters in Mechatronics and Microsystems.
InhaltAn introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control.
Skriptavailable.
Voraussetzungen / BesonderesThe course will be taught in English.
252-0535-00LMachine Learning Information W8 KP3V + 2U + 2AJ. M. Buhmann
KurzbeschreibungMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
LernzielStudents will be familiarized with the most important concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. A machine learning project will provide an opportunity to test the machine learning algorithms on real world data.
InhaltThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Bayesian theory of optimal decisions
- Maximum likelihood and Bayesian parameter inference
- Classification with discriminant functions: Perceptrons, Fisher's LDA and support vector machines (SVM)
- Ensemble methods: Bagging and Boosting
- Regression: least squares, ridge and LASSO penalization, non-linear regression and the bias-variance trade-off
- Non parametric density estimation: Parzen windows, nearest nieghbour
- Dimension reduction: principal component analysis (PCA) and beyond
SkriptNo lecture notes, but slides will be made available on the course webpage.
LiteraturC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Voraussetzungen / BesonderesThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should at least have followed one previous course offered by the Machine Learning Institute (e.g., CIL or LIS) or an equivalent course offered by another institution.
263-5902-00LComputer Vision Information W6 KP3V + 1U + 1AL. Van Gool, V. Ferrari, A. Geiger
KurzbeschreibungThe goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
LernzielThe objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.
InhaltCamera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Voraussetzungen / BesonderesIt is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
151-0563-01LDynamic Programming and Optimal Control Information W4 KP2V + 1UR. D'Andrea
KurzbeschreibungIntroduction to Dynamic Programming and Optimal Control.
LernzielCovers the fundamental concepts of Dynamic Programming & Optimal Control.
InhaltDynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.
LiteraturDynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
Voraussetzungen / BesonderesRequirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.
151-0851-00LRobot Dynamics Information Belegung eingeschränkt - Details anzeigen W4 KP2V + 1UM. Hutter, R. Siegwart, T. Stastny
KurzbeschreibungWe will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing.
LernzielThe primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems.
InhaltThe course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics.
Voraussetzungen / BesonderesThe contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics.
  •  Seite  1  von  4 Nächste Seite Letzte Seite     Alle