751-5500-00L  Simulations and Sensors in Agri-Food Supply Chains

SemesterFrühjahrssemester 2022
DozierendeT. Defraeye, D. Onwude
Periodizitätjährlich wiederkehrende Veranstaltung


751-5500-00 GSimulations and Sensors in Agri-Food Supply Chains2 Std.
Fr16:15-18:00LFW B 1 »
16:15-18:00LFW B 2 »
T. Defraeye, D. Onwude


KurzbeschreibungThis course provides students with expert knowledge and skills on how to effectively apply physics-based simulations and sensing in the supply chain of horticultural crops. The main targets are to use these technologies to better preserve food quality, extend shelf life and reduce food waste and the associated carbon footprint.
LernzielThe course targets the postharvest part of the supply chain, as products pass through pre-cooling facilities, refrigerated containers and trucks, and cold storage facilities, before arriving at the retailer and consumer. We target supply chains of both domestic and tropical horticultural crops, including apple, citrus, mangoes, and berries. In addition, other applications in agri-food chains are highlighted, such as preharvest sensing and monitoring for horticultural crops as well as physics-based simulations and sensing in supply chains of foods of animal origin (meat or milk).

In the course, we target innovative solutions that are enabled by the augmented insight that simulations and sensing provide with respect to the biophysical processes driving food decay in the cold chain. A key focus of the course is on digital tools for the agri-food chain, such as digital twins, food simulants, wireless and optical sensors, big data, data analytics, and blockchain technology.

A key objective is to gain specialized knowledge in order to:
- Identify which postharvest practices are most suitable for a certain produce and supply chain (e.g. dynamic controlled atmosphere, modified atmosphere packaging, ethylene scrubbing)
- Identify which heat and mass transfer processes (e.g. conduction, convection, radiation, respiration, evaporation) play a key role for a certain produce and supply chain
- Identify which state-of-the-art sensing technology is most optimal for a certain produce and supply chain (e.g. wireless communication, blockchain technology, and biophysical twins)
- Assess if a physics-based model and simulation is built up according to best practices, and if the reported results are realistic
- Understand the link of the cooling process to the evolution of food quality attributes

Another key objective is to acquire skills in order to:
- Perform hands-on multiphysics simulations of food cooling processes
- Measure hands-on a food cooling process with several types of sensors
- Calculate food shelf-life by experiments and kinetic-rate-law modeling
- Quantify the environmental impact of postharvest technology and food waste on the horticultural value chain
InhaltThe course is built up of lectures, exercise sessions, and an excursion. The student will then apply this knowledge to perform an expert assessment of a postharvest problem (in a group), report the findings and present the solution strategies. Throughout the course, we also review upcoming national and international startups and companies in these fields.

The content is as follows:
1. Introduction to the postharvest value chain
2. Postharvest quality and losses
3. Bio-environmental heat and mass transfer
4. Sensors & food simulants
5. Basics & best practice of physics-based simulations
6. Current and emerging postharvest technologies
7. Group assignment on physics-based simulation and sensors
8. Food waste & environmental impact
9. Excursion

With this knowledge and skills, the student will be able to provide an expert assessment on a specific problem in postharvest engineering in the context of a group assignment:
- Apply the learned analytical approach to comprehensively understand and quantitatively analyze a simple postharvest problem.
- Identify and quantify strategies and solutions to improve quality preservation, shelf life and reduce food waste, and explain the scientific drivers behind these improvements.
- Identify challenges and prioritize solutions.
- Report and present the results.
SkriptHandouts of the slides will be provided
LiteraturRecommended literature (not-obligatory):
Datta (2017), Heat and Mass Transfer: A Biological Context. CRC Press, Taylor & Francis Group.
Thompson (2008), Commercial cooling of fruits, vegetables and flowers, University of California. University of California, California.
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Medien und digitale Technologiengeprüft
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Persönliche KompetenzenAnpassung und Flexibilitätgeprüft
Kreatives Denkengeprüft
Kritisches Denkengeprüft


Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte3 KP
PrüfendeT. Defraeye, D. Onwude
RepetitionEs wird ein Repetitionstermin in den ersten zwei Wochen des unmittelbar nachfolgenden Semesters angeboten.
Prüfungsmodusmündlich 30 Minuten
Zusatzinformation zum PrüfungsmodusOral, end-of-semester examination (open book)


Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.


Keine Informationen zu Gruppen vorhanden.


PlätzeMaximal 50
WartelisteBis 04.03.2022

Angeboten in

Agrarwissenschaften MasterWahlfächerW+Information
Agrarwissenschaften MasterData Science and Technology for Agricultural ScienceW+Information
Agrarwissenschaften MasterSafety and Quality in Agri-Food ChainW+Information
Lebensmittelwissenschaften MasterOptionale FächerWInformation
Lebensmittelwissenschaften MasterFood Process DesignWInformation
Lebensmittelwissenschaften MasterSafety and Quality in Agri-Food ChainWInformation