Computer architecture is the science & art of designing and optimizing hardware components and the hardware/software interface to create a computer that meets design goals. This course covers basic components of a modern computing system (processors, memory, interconnects, accelerators). The course takes a hardware/software cooperative approach to understanding and designing computing systems.
Objective
We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest trends by exploring the recent research in Industry and Academia. We will extensively cover memory technologies (including DRAM and new Non-Volatile Memory technologies), memory scheduling, parallel computing systems (including multicore processors and GPUs), heterogeneous computing, processing-in-memory, interconnection networks, specialized systems for major data-intensive workloads (e.g. graph processing, bioinformatics, machine learning), etc.
Content
The principles presented in the lecture are reinforced in the laboratory through 1) the design and implementation of a cycle-accurate simulator, where we will explore different components of a modern computing system (e.g., pipeline, memory hierarchy, branch prediction, prefetching, caches, multithreading), and 2) the extension of state-of-the-art research simulators (e.g., Ramulator) for more in-depth understanding of specific system components (e.g., memory scheduling, prefetching).
Lecture notes
All the materials (including lecture slides) will be provided on the course website: https://safari.ethz.ch/architecture/ The video recordings of the lectures are expected to be made available after lectures.
Literature
We will provide required and recommended readings in every lecture. They will mainly consist of research papers presented in major Computer Architecture and related conferences and journals.