Followed by an introduction to the basic principles of quantum physics, such as superposition, interference, or entanglement, a variety of subjects are treated: Quantum algorithms, teleportation, quantum communication complexity and "pseudo-telepathy", quantum cryptography, as well as the main concepts of quantum information theory.
Learning objective
It is the goal of this course to get familiar with the most important notions that are of importance for the connection between Information and Physics. The formalism of Quantum Physics will be motivated and derived, and the use of these laws for information processing will be understood. In particular, the important algorithms of Grover as well as Shor will be studied and analyzed.
Content
According to Landauer, "information is physical". In quantum information, one is interested in the consequences and the possibilites offered by the laws of quantum physics for information processing. Followed by an introduction to the basic principles of quantum physics, such as superposition, interference, or entanglement, a variety of subjects are treated: Quantum algorithms, teleportation, quantum communication complexity and "pseude-telepathy", quantum cryptography, as well as the main concepts of quantum information theory.