Mohsen Ghaffari: Katalogdaten im Herbstsemester 2020

NameHerr Dr. Mohsen Ghaffari
BeziehungAssistenzprofessor (Tenure Track)

252-0209-00LAlgorithms, Probability, and Computing Information 8 KP4V + 2U + 1AB. Gärtner, M. Ghaffari, R. Kyng, D. Steurer
KurzbeschreibungAdvanced design and analysis methods for algorithms and data structures: Random(ized) Search Trees, Point Location, Minimum Cut, Linear Programming, Randomized Algebraic Algorithms (matchings), Probabilistically Checkable Proofs (introduction).
LernzielStudying and understanding of fundamental advanced concepts in algorithms, data structures and complexity theory.
SkriptWill be handed out.
LiteraturIntroduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest;
Randomized Algorithms by R. Motwani und P. Raghavan;
Computational Geometry - Algorithms and Applications by M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf.
252-4202-00LSeminar in Theoretical Computer Science Information Belegung eingeschränkt - Details anzeigen 2 KP2SE. Welzl, B. Gärtner, M. Ghaffari, M. Hoffmann, J. Lengler, D. Steurer, B. Sudakov
KurzbeschreibungPräsentation wichtiger und aktueller Arbeiten aus der theoretischen Informatik, sowie eigener Ergebnisse von Diplomanden und Doktoranden.
LernzielDas Lernziel ist, Studierende an die aktuelle Forschung heranzuführen und sie in die Lage zu versetzen, wissenschaftliche Arbeiten zu lesen, zu verstehen, und zu präsentieren.
Voraussetzungen / BesonderesThis seminar takes place as part of the joint research seminar of several theory groups. Intended participation is for students with excellent performance only. Formal restriction is: prior successful participation in a master level seminar in theoretical computer science.
263-4500-00LAdvanced Algorithms Information 9 KP3V + 2U + 3AM. Ghaffari
KurzbeschreibungThis is a graduate-level course on algorithm design (and analysis). It covers a range of topics and techniques in approximation algorithms, sketching and streaming algorithms, and online algorithms.
LernzielThis course familiarizes the students with some of the main tools and techniques in modern subareas of algorithm design.
InhaltThe lectures will cover a range of topics, tentatively including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms, and derandomization.
Voraussetzungen / BesonderesThis course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students.

Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consult the instructor.