Emilio Frazzoli: Catalogue data in Autumn Semester 2022

Name Prof. Dr. Emilio Frazzoli
FieldDynamic Systems and Control
Dyn. Systeme u. Regelungstechnik
ETH Zürich, ML K 33
Sonneggstrasse 3
8092 Zürich
Telephone+41 44 632 79 28
DepartmentMechanical and Process Engineering
RelationshipFull Professor

151-0325-00LPlanning and Decision Making for Autonomous Robots4 credits2V + 1UE. Frazzoli
AbstractPlanning safe and efficient motions for robots in complex environments, often shared with humans and other robots, is a difficult problem combining discrete and continuous mathematics, as well as probabilistic, game-theoretic, and ethical/regulatory aspects. This course will cover the algorithmic foundations of motion planning, with an eye to real-world implementation issues.
ObjectiveThe students will learn how to design and implement state-of-the-art algorithms for planning the motion of robots executing challenging tasks in complex environments.
ContentDiscrete planning, shortest path problems. Planning under uncertainty. Game-theoretic planning. Geometric Representations. Steering methods. Configuration space and collision checking. Potential and Navigation functions. Grids, lattices, visibility graphs. Mathematical Programming. Sampling-based methods. Planning with limited information. Multi-agent Planning.
Lecture notesCourse notes and other education material will be provided for free in an electronic form.
LiteratureThere is no required textbook, but an excellent reference is Steve Lavalle's book on "Planning Algorithms."
Prerequisites / NoticeStudents should have taken basic courses in optimization, control systems, probability theory, and should be familiar with modern programming languages and practices (e.g., Python, and/or C/C++). Previous exposure to robotic systems is a definite advantage.
Fostered competenciesFostered competencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
151-0591-00LControl Systems I Information
Note: The previous course title in German until HS21 "Regelungstechnik I".
4 credits2V + 2UE. Frazzoli
AbstractAnalysis and controller synthesis for linear time invariant systems with one input and one output signal (SISO); transition matrix; stability; controllability; observability; Laplace transform; transfer functions; transient and steady state responses. PID control; dynamic compensators; Nyquist theorem.
ObjectiveIdentify the role and importance of control systems in everyday life. Obtain models of single-input single-output (SISO) linear time invariant (LTI) dynamical systems. Linearization of nonlinear models. Interpret stability, observability and controllability of linear systems. Describe and associate building blocks of linear systems in time and frequency domain with equations and graphical representations (Bode plot, Nyquist plot, root locus). Design feedback controllers to meet stability and performance requirements for SISO LTI systems. Explain differences between expected and actual control results. Notions of robustness and other nuisances such as discrete time implementation.
ContentModeling and linearization of dynamic systems with single input and output signals. State-space description. Analysis (stability, reachability, observability, etc.) of open-loop systems. Laplace transformation, systems analysis in the frequency domain. Transfer functions and analysis of the influence of its poles and zeros on the system's dynamic behavior. Frequency response. Analysis of closed-loop systems using the Nyquist criterion. Formulation of performance constraints. Specification of closed-loop system behavior. Synthesis of elementary closed-loop control systems (PID, lead/lag compensation, loop shaping). Discrete time state space representation and stability analysis.
Lecture notesLecture slides and additional material will be posted online.
LiteratureThere is no required textbook.

A nice introductory book on feedback control, available online for free, is :

Feedback Systems: An Introduction for Scientists and Engineers
Karl J. Astrom and Richard M. Murray

The book can be downloaded at https://fbswiki.org/wiki/index.php/Main_Page
Prerequisites / NoticeBasic knowledge of (complex) analysis and linear algebra.
Fostered competenciesFostered competencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesnot assessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingnot assessed
Media and Digital Technologiesnot assessed
Problem-solvingnot assessed
Project Managementnot assessed
Social CompetenciesCommunicationnot assessed
Cooperation and Teamworknot assessed
Customer Orientationnot assessed
Leadership and Responsibilitynot assessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversitynot assessed
Negotiationnot assessed
Personal CompetenciesAdaptability and Flexibilitynot assessed
Creative Thinkingnot assessed
Critical Thinkingnot assessed
Integrity and Work Ethicsnot assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed
227-0920-00LSeminar in Systems and Control Information 0 credits1SF. Dörfler, R. D'Andrea, E. Frazzoli, M. H. Khammash, J. Lygeros, R. Smith
AbstractCurrent topics in Systems and Control presented mostly by external speakers from academia and industry
Objectivesee above