Martin Raubal: Katalogdaten im Herbstsemester 2020

NameHerr Prof. Dr. Martin Raubal
LehrgebietGeoinformations-Engineering
Adresse
Inst. f. Kartografie u. Geoinform.
ETH Zürich, HIL G 27.3
Stefano-Franscini-Platz 5
8093 Zürich
SWITZERLAND
Telefon+41 44 633 30 26
E-Mailmraubal@ethz.ch
URLhttp://www.raubal.ethz.ch/
DepartementBau, Umwelt und Geomatik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
101-0522-10LDoctoral Seminar Data Science and Machine Learning in Civil, Env. and Geospatial Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 21.
1 KP2SK. Schindler, E. Chatzi, F. Corman, O. Fink, I. Hajnsek, M. A. Kraus, M. Lukovic, M. Raubal, B. Soja, B. Sudret
KurzbeschreibungCurrent research in machine learning and data science within the research fields of the department. The goal is to learn about current research projects at our department, to strengthen our expertise and collaboration with respect to data-driven models and methods, to provide a platform where research challenges can be discussed, and also to practice scientific presentations.
Lernziel- learn about discipline-specific methods and applications of data science in neighbouring fields
- network people and methodological expertise across disciplines
- establish links and discuss connections, common challenges and disciplinespecific differences
- practice presentation and discussion of technical content to a broader, less specialised scientific audience
InhaltCurrent research at D-BAUG will be presented and discussed.
Voraussetzungen / BesonderesThis doctoral seminar is intended for doctoral students affiliated with the Department of Civil, Environmental and Geomatic Engineering. Other students who work on related topics need approval by at least one of the organisers to register for the seminar.

Participants are expected to possess elementary skills in statistics, data
science and machine learning, including both theory and practical modelling and implementation. The seminar targets students who are actively working on related research projects.
101-0523-10LFrontiers in Machine Learning Applied to Civil, Env. and Geospatial Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 21.
1 KP2SO. Fink, E. Chatzi, F. Corman, I. Hajnsek, M. A. Kraus, M. Lukovic, M. Raubal, K. Schindler, B. Soja, B. Sudret
KurzbeschreibungThis doctoral seminar organised by the D-BAUG platform on data science and machine learning aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).
LernzielStudents will
• Critically read scientific papers on the recent developments in machine learning
• Put the research in context
• Present the contributions
• Discuss the validity of the scientific approach
• Evaluate the underlying assumptions
• Evaluate the transferability/adpatability of the proposed approaches to own research
• (Optionally) implement the proposed approaches.
InhaltWith the increasing amount of data collected in various domains, the importance of data science in many disciplines, such as infrastructure monitoring and management, transportation, spatial planning, structural and environmental engineering, has been increasing. The field is constantly developing further with numerous advances, extensions and modifications.
The course aims at discussing recent research papers in the field of machine learning and analyzing the transferability/adaptability of the proposed approaches to applications in the field of civil and environmental engineering (if possible and applicable, also implementing the adapted algorithms).
Each student will select a paper that is relevant for his/her research and present its content in the seminar, putting it into context, analyzing the assumptions, the transferability and generalizability of the proposed approaches. The students will also link the research content of the selected paper to the own research, evaluating the potential of transferring or adapting it. If possible and applicable, the students will also implement the adapted algorithms The students will work in groups of three students, where each of the three students will be reading each other’s selected papers and providing feedback to each other.
Voraussetzungen / BesonderesThis doctoral seminar is intended for doctoral students affiliated with the Department of Civil, Environmental and Geomatic Engineering. Other students who work on related topics need approval by at least one of the organisers to register for the seminar.

Participants are expected to possess elementary skills in statistics, data science and machine learning, including both theory and practical modelling and implementation. The seminar targets students who are actively working on related research projects.
103-0233-10LGIS GZ6 KP5GM. Raubal
KurzbeschreibungGrundlagen von Geoinformationssystemen: Modellierung von raumbezogenen Daten; Metrik & Topologie; Vektor-, Raster- und Netzwerkdaten; thematische Daten; räumliche Statistik; Systemarchitekturen; Datenqualität; räumliche Abfragen & Analysen; Geovisualisierung; Geodatenbanken; Übung als Gruppenprojekt mit GIS-Software
LernzielTheoretische Grundlagen von räumlicher Information im Hinblick auf Datenerfassung, Repräsentation, Analyse und Visualisierung kennen.
Grundlagen der Geoinformationstechnologie kennen, um Projekte im Zusammenhang mit Realisierung, Nutzung und Betrieb von raumbezogenen Informationssystemen ingenieurmässig planen, bearbeiten und leiten zu können.
Inhalt- Einführung GIS & GIScience
- Konzeptionelles Modell & Datenschema
- Vektorgeometrie & Topologie
- Rastergeometrie und -algebra
- Netzwerke
- Thematische Daten
- Räumliche Statistik
- Systemarchitekturen & Interoperabilität
- Datenqualität, Unsicherheiten & Metadaten
- Räumliche Abfragen und Analysen
- Präsentation raumbezogener Daten
- Geodatenbanken
SkriptVorlesungspräsentationen werden digital zur Verfügung gestellt.
LiteraturBill, R. (2016). Grundlagen der Geo-Informationssysteme (6. Auflage): Wichmann.
Bartelme, N. (2005). Geoinformatik - Modelle, Strukturen, Funktionen (4. Auflage). Berlin: Springer.
103-0234-AALGIS II
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
5 KP11RM. Raubal
KurzbeschreibungAdvanced course in geoinformation technologies: conceptual and logical modelling of networks, 3D- and 4D-data and spatial processes in GIS; raster data structures and operations; mobile GIS; Internet and GIS; interoperability and data transfer; legal and technical foundations of spatial data infrastructures (SDI)
LernzielStudents will be able to carry out the following phases of a GIS project: data modelling, mobile data acquisition and analysis, Web publication of data and integration of interoperable geospatial web services into a Spatial Data Infrastructure (SDI).

Students will deepen their knowledge of conceptual and logical modeling by means of the particular requirements of networks as well as 3D- and 4D-data.
LiteraturWorboys, M., & Duckham, M. (2004). GIS - A Computing Perspective (2nd Edition). Boca Raton, FL: CRC Press.
Fu, P., Sun, J. (2010). Web GIS: Principles and Applications. Esri Press.
103-0237-00LGIS III5 KP3GM. Raubal
KurzbeschreibungThe course deals with advanced topics in GIS, such as Business aspects and Legal issues; Geostatistics; Human-Computer Interaction; Cognitive Issues in GIS; Geosensors; Spatial Data Mining and Machine Learning for GIS.
LernzielStudents will get a detailed overview of advanced GIS topics. They will work on a small project with geosensors in the lab and perform practical tasks relating to Geostatistics and Machine Learning.
SkriptLecture slides will be made available in digital form.
103-0255-AALGeodata Analysis
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
2 KP4RM. Raubal
KurzbeschreibungThe course deals with advanced methods in spatial data analysis.
Lernziel- Understanding the theoretical principles in spatial data analysis.
- Understanding and using methods for spatial data analysis.
- Detecting common sources of errors in spatial data analysis.
- Advanced practical knowledge in using appropriate GIS-tools.
InhaltThe course deals with advanced methods in spatial data analysis in theory as well as in practical exercises.
LiteraturMITCHELL, A., 2012, The Esri Guide to GIS Analysis - Modeling Suitability, Movement, and Interaction (3. Auflage), ESRI Press, Redlands, California
103-0717-AALGeoinformation Technologies and Analysis
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP13RM. Raubal
KurzbeschreibungAdvanced geoinformation technologies and analyses methods: Mobile GIS; Web-GIS & Geo-Web-Services; Spatial Big Data; Temporal aspects in GIS; Analysis of movement data; User interfaces
LernzielKnowing advanced topics of geoinformation technologies (Mobile GIS and Web-GIS) and spatio-temporal analysis methods for the realization, application and operation of Web-GIS in engineering projects.
Voraussetzungen / BesonderesIntroductory GIS course
103-0717-00LGeoinformationstechnologien und -analysen6 KP5GM. Raubal
KurzbeschreibungGeoinformationstechnologien und -analysen für Fortgeschrittene: Mobile GIS; Web-GIS & Geo-Web-Services; Spatial Big Data; Zeitliche Aspekte in GIS; Analyse von Bewegungsdaten; Benutzerschnittstellen
Übungen: Web-GIS-Semesterprojekt in Gruppenarbeit
LernzielFortgeschrittene Geoinformationstechnologien (Mobile GIS und Web-GIS) und raum-zeitliche Analysemethoden kennen, um Projekte im Zusammenhang mit Realisierung, Nutzung und Betrieb von Web-GIS ingenieurmässig planen und implementieren zu können.
Inhalt- Mobile GIS
- Web-GIS & Geo-Web-Services
- Spatial Big Data
- Zeitliche Aspekte in GIS
- Analyse von Bewegungsdaten
- Benutzerschnittstellen
SkriptVorlesungspräsentationen werden digital zur Verfügung gestellt.
LiteraturBill, R. (2016). Grundlagen der Geo-Informationssysteme (6. Auflage): Wichmann.
Bartelme, N. (2005). Geoinformatik - Modelle, Strukturen, Funktionen (4. Auflage). Berlin: Springer.
O'Sullivan, D., & Unwin, D. (2010). Geographic Information Analysis (2nd Edition). Wiley.
Voraussetzungen / BesonderesGIS GZ
103-0778-00LGIS and Geoinformatics Lab4 KP3PM. Raubal
KurzbeschreibungIndependent study project with novel geoinformation technologies. Information on past projects: http://gis-lab.ethz.ch/
LernzielThis lab focuses on presenting spatial, temporal, and open data in tangible ways. Students will learn how to work with novel geoinformation technologies such as virtual/mixed reality or mobile applications. They will engage in teamwork, application design, programming and presenting their results.
103-0817-00LGeomatics Seminar Belegung eingeschränkt - Details anzeigen 4 KP2SM. Raubal, A. Grêt-Regamey, L. Hurni, M. Rothacher, K. Schindler, A. Wieser
KurzbeschreibungIntroduction to general scientific working methods and skills in the core fields of geomatics. It includes a literature study, a review of one of the articles, a presentation and a report about the literature study.
LernzielLearn how to search for literature, how to write a scientific report, how to present scientific results, and how to critically read and review a scientific article.
InhaltA list of topics for the literature study are made available at the beginning of the semester. A topic can be selected based on a moodle.
Voraussetzungen / BesonderesAgreement with one of the responsible Professors is necessary.
103-2233-AALGIS Basics
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP13RM. Raubal
KurzbeschreibungFundamentals in geoinformation technologies: database principles, including modeling of spatial information, geometric and semantic models, topology and metrics; practical training with GIS software.
LernzielKnow the fundamentals in geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.
InhaltModelling of spatial information
Geometric and semantic models
Topology & metrics
Raster and vector models
Databases
Applications
Labs with GIS software
LiteraturWorboys, M., & Duckham, M. (2004). GIS - A Computing Perspective (2nd ed.). Boca Raton, FL: CRC Press.
O'Sullivan, D., & Unwin, D. (2010). Geographic Information Analysis (second ed.). Hoboken, New Jersey: Wiley.
166-0201-00LPotenziale räumlicher Informations- und Kommunikationstechnologien Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Nur für MAS in Mobilität der Zukunft und CAS in Mobilität der Zukunft: Technologie-Potenziale.
3.5 KP3GM. Raubal
KurzbeschreibungRäumliche Informations- und Kommunikationssysteme beeinflussen massgeblich die Entwicklung von Mobilitätsangeboten. Die Teilnehmenden erlangen ein vertieftes Verständnis zu räumlichen Informationssystemen/-services und Kommunikationstechnologien (ICT) i.H. auf zukünftige Mobilitätssysteme und -applikationen.
LernzielInformations- und Kommunikations-Technologie (ICT) und "räumliche Informationstechnologien" für zukunftsfähige Mobilität zu kennen und Potenziale für konkrete Problemstellungen zu identifizieren und gezielt zu nutzen.
Inhalt- Funktionsweise und Anwendung von Geografischen Informationssystemen (GIS) zur Repräsentation and Analyse von Mobilitätssystemen (Geodaten aquirieren, modellieren, analysieren und visualisieren)
- Potenziale durch Einsatz GIS & ICT für effiziente Mobilitätslösungen (tangible, non-tangible)
- Funktionsweise und Einsatz von mobilen räumlichen Informationstechnologien in zukünftigen Mobilitätssystemen
- Methoden der raum-zeitlichen Analyse und Geodatenanalyse
- Technische Aspekte von Informations- und Kommunikationstechnologien (ICT)
- Modellierung, Simulation und Bewertung von Verkehrsverhalten
- Grundlagen des autonomen Fahrens
- Rechtliche Aspekte von Geodaten
- Anwendungen: Verkehrsverhalten Schweiz, Location Based Services für energieeffizientes Verhalten, GIS für Verkehrssystem Zürich (multimodal)
SkriptZu Beginn des Moduls abgegeben
LiteraturZu Beginn des Moduls abgegeben
Voraussetzungen / BesonderesWerden an Studierende des MAS / des CAS bis Semesterstart bekannt gegeben