Jeffrey W. Bode: Catalogue data in Spring Semester 2019

Name Prof. Dr. Jeffrey W. Bode
FieldSynthetic Organic Chemistry
Lab. für Organische Chemie
ETH Zürich, HCI F 315
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
Telephone+41 44 633 21 03
DepartmentChemistry and Applied Biosciences
RelationshipFull Professor

529-0222-00LOrganic Chemistry II3 credits2V + 1UJ. W. Bode, B. Morandi
AbstractThis course builds on the material learned in Organic Chemistry I or Organic Chemistry II for Biology/Pharmacy Students. Topics include advanced concepts and mechanisms of organic reactions and introductions to pericyclic and organometallic reactions. These topics are combined to the planning and execution of multiple step syntheses of complex molecules.
ObjectiveGoals of this course include the a deeper understanding of basic organic reactions and mechanism as well as advanced and catalytic transformations (for example, Mitsunobu reactions, Corey-Chaykovsky epoxidation, Stetter reactions, etc). Reactive intermediates including carbenes and nitrenes are covered, along with methods for their generation and use in complex molecule synthesis. Frontier molecular orbital theory (FMO) is introduced and used to rationalize pericyclic reactions including Diels Alder reactions, cycloadditions, and rearrangements (Cope, Claisen). The basic concepts and key reactions of catalytic organometallic chemistry, which are key methods in modern organic synthesis, and introduced, with an emphasis on their catalytic cycles and elementrary steps. All of these topics are combined in an overview of strategies for complex molecule synthesis, with specific examples from natural product derived molecules used as medicines.
ContentOxidation and reduction of organic compounds, redox netural reactions and rearrangments, advanced transformations of functional groups and reaction mechanismes, kinetic and thermodynamic control of organic reactions, carbenes and nitrenes, frontier molecular orbital theory (FMO), cycloadditions and pericyclic reactions, introduction to organometallic chemistry and catalytic cross couplings, introduction to peptide synthesis and protecting groups, retrosynthetic analysis of complex organic molecules, planning and execution of multi-step reaction.
Lecture notesThe lecture notes and additional documents including problem sets are available as PDF files online, without charge. Link:
LiteratureClayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012.
529-0230-00LInorganic and Organic Chemistry I Restricted registration - show details
Enrolment only possible up to the beginning of the semester.
8 credits12PJ. W. Bode, M. Jackl, V. R. Pattabiraman
AbstractLaboratory Course in Inorganic and Organic Chemistry I
ObjectiveIntroduction into basic techniques used in the organic laboratory. Understanding organic reactions through experiments.
ContentPart I: Basic operations such as the isolation, purification and characterization of organic compounds: distillation, extraction, chromatography, crystallization, IR (UV/1H-NMR)-spectroscopy for the identification of the constituion of organic compounds.

Part II: Organic reactions: preparative chemistry. From simple, one-step to multistep syntheses. Both classic and modern reactions will be performed.

Part III: Preparation of a chiral, enantiomerically pure ligand for asymmetric catalysis (together with AOCP II)
Literature- R. K. Müller, R. Keese: "Grundoperationen der präparativen organischen Chemie"; J. Leonard, B. Lygo, G. Procter: "Praxis der Organischen Chemie" (Übersetzung herausgegeben von G. Dyker), VCH, Weinheim, 1996, ISBN 3-527-29411-2.
Prerequisites / NoticePrerequisites:
- Praktikum Allgemeine Chemie (1. Semester, 529-0011-04/05)
- Vorlesung Organische Chemie I (1. Semester, 529-0011-03)
529-0290-00LOrganic Chemistry (Seminar) Restricted registration - show details 0 credits2SJ. W. Bode, E. M. Carreira, D. Hilvert, P. Rivera Fuentes, H. Wennemers, R. Zenobi
529-0299-00LOrganic Chemistry0 credits1.5KJ. W. Bode, E. M. Carreira, P. Chen, D. Hilvert, P. Rivera Fuentes, H. Wennemers, R. Zenobi