# Emmanuel Kowalski: Katalogdaten im Frühjahrssemester 2020

 Name Herr Prof. Dr. Emmanuel Kowalski Lehrgebiet Mathematik Adresse Professur für MathematikETH Zürich, HG G 64.1Rämistrasse 1018092 ZürichSWITZERLAND Telefon +41 44 632 34 41 E-Mail emmanuel.kowalski@math.ethz.ch URL http://www.math.ethz.ch/~kowalski Departement Mathematik Beziehung Ordentlicher Professor

NummerTitelECTSUmfangDozierende
401-2000-00LScientific Works in Mathematics
Zielpublikum:
Bachelor-Studierende im dritten Jahr;
Master-Studierende, welche noch keine entsprechende Ausbildung vorweisen können.
0 KPÖ. Imamoglu, E. Kowalski
KurzbeschreibungIntroduction to scientific writing for students with focus on publication standards and ethical issues, especially in the case of citations (references to works of others.)
LernzielLearn the basic standards of scientific works in mathematics.
Inhalt- Types of mathematical works
- Publication standards in pure and applied mathematics
- Data handling
- Ethical issues
- Citation guidelines
SkriptMoodle of the Mathematics Library: https://moodle-app2.let.ethz.ch/course/view.php?id=519
Voraussetzungen / BesonderesDirective https://www.ethz.ch/content/dam/ethz/common/docs/weisungssammlung/files-en/declaration-of-originality.pdf
401-3109-65LProbabilistic Number Theory
Findet dieses Semester nicht statt.
8 KP4GE. Kowalski
KurzbeschreibungThe course presents some results of probabilistic number theory in a unified manner, including distribution properties of the number of prime divisors of integers, probabilistic properties of the zeta function and statistical distribution of exponential sums.
LernzielThe goal of the course is to present some results of probabilistic number theory in a unified manner.
InhaltThe main concepts will be presented in parallel with the proof of a few main theorems:
(1) the Erdős-Wintner and Erdős-Kac theorems concerning the distribution of values of arithmetic functions;
(2) the distribution of values of the Riemann zeta function, including Selberg's central limit theorem for the Riemann zeta function on the critical line;
(3) the Chebychev bias for primes in arithmetic progressions;
(4) functional limit theorems for the paths of partial sums of families of exponential sums.
SkriptThe lecture notes for the class are available at

https://www.math.ethz.ch/~kowalski/probabilistic-number-theory.pdf
Voraussetzungen / BesonderesPrerequisites: Complex analysis, measure and integral; some probability theory is useful but the main concepts needed will be recalled.
Some knowledge of number theory is useful but the main results will be summarized.
401-5110-00LNumber Theory Seminar 0 KP1KÖ. Imamoglu, P. S. Jossen, E. Kowalski, P. D. Nelson, R. Pink, G. Wüstholz
KurzbeschreibungForschungskolloquium
LernzielVorträge über neue Themen aus der Forschung.
InhaltForschungsseminar in Algebra, Zahlentheorie und Geometrie, richtet sich insbesondere an Mitarbeiterinnen und Mitarbeiter sowie Doktorandinnen und Doktoranden.