Marloes H. Maathuis: Katalogdaten im Herbstsemester 2017

NameFrau Prof. Dr. Marloes H. Maathuis
LehrgebietStatistik
Adresse
Seminar für Statistik (SfS)
ETH Zürich, HG G 24.1
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 61 84
E-Mailmarloes.maathuis@stat.math.ethz.ch
URLhttp://stat.ethz.ch/~maathuis
DepartementMathematik
BeziehungOrdentliche Professorin

NummerTitelECTSUmfangDozierende
401-3620-67LStudent Seminar in Statistics: Computer Age Statistical Inference Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 24

Hauptsächlich für Studierende im Studiengang Mathematik Bachelor oder Master, welche zusätzlich zum Einführungskurs 401-2604-00L Wahrscheinlichkeit und Statistik / Probability and Statistics mindestens ein Kern- oder Wahlfach in Statistik besucht haben.
4 KP2SM. H. Maathuis, P. L. Bühlmann, N. Meinshausen, S. van de Geer
KurzbeschreibungWe study selected chapters from the book "Computer Age Statistical Inference: Algorithms, Evidence and Data Science" by Bradley Efron and Trevor Hastie.
LernzielDuring this seminar, we will study roughly one chapter per week from the book "Computer Age Statistical Inference: Algorithms, Evidence and Data Science" by Bradley Efron and Trevor Hastie. You will obtain a good overview of the field of modern statistics. Moreover, you will practice your self-studying and presentation skills.
InhaltIn the words of Efron and Hastie: "The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. “Big data,” “data science,” and “machine learning” have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on a journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories – Bayesian, frequentist, Fisherian – individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The book integrates methodology and algorithms with statistical inference, and ends with speculation on the future direction of statistics and data science."
LiteraturBradley Efron and Trevor Hastie (2016). Computer Age Statistical Inference: Algorithms, Evidence and Data Science. Cambridge University Press, New York. ISBN: 9781107149892.
Voraussetzungen / BesonderesWe require at least one course in statistics in addition to the 4th semester course Introduction to Probability and Statistics, as well as some experience with the statistical software R.

Topics will be assigned during the first meeting.
401-5620-00LResearch Seminar on Statistics Information 0 KP2KL. Held, T. Hothorn, D. Kozbur, M. H. Maathuis, N. Meinshausen, S. van de Geer, M. Wolf
KurzbeschreibungResearch colloquium
Lernziel
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 KP1KM. Kalisch, R. Furrer, L. Held, T. Hothorn, M. H. Maathuis, M. Mächler, L. Meier, N. Meinshausen, M. Robinson, C. Strobl, S. van de Geer
KurzbeschreibungEtwa 5 Vorträge zur angewandten Statistik.
LernzielKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Anwendungsgebieten.
InhaltIn etwa 5 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
Voraussetzungen / BesonderesDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm:
http://stat.ethz.ch/events/zukost
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.