Klaas P. Prüssmann: Katalogdaten im Herbstsemester 2022

NameHerr Prof. Dr. Klaas P. Prüssmann
LehrgebietBioimaging
Adresse
Inst. f. Biomedizinische Technik
ETH Zürich, ETZ F 89
Gloriastrasse 35
8092 Zürich
SWITZERLAND
Telefon+41 44 632 66 96
Fax+41 44 632 13 02
E-Mailpruessmann@biomed.ee.ethz.ch
DepartementInformationstechnologie und Elektrotechnik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
227-0085-53LProjekte & Seminare: Motion Sensing Technologies for Magnetic Resonance Imaging (MRI) Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
4 KP4PK. P. Prüssmann
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielCurrent MRI scans are limited by patient motion. In clinics, radiologists are often confronted with images with severe motion artefacts in their images. They either have to make a diagnosis although the image artefacts were they could miss crucial information, or they have to send the patient back into the scanner for reacquisition. Such reacquisition might inflict additional costs in the six-figure range per scanner per year.
Further, in research, MRI images from ultra-high field systems are already limited by motion from the cardiobalistic and respiratory movement. Resulting in subpar performance if not addressed appropriately.

The key to overcoming such motion artefacts is estimating the motion and correct for it. Preferably this is done prospective in real-time or otherwise afterwards retrospective in the image reconstruction. Such methods are instrumental in brain imaging since the brain's movement is well described by the rigid body behaviour of the skull.

To do such motion correction, one needs a motion-sensing technology to measure the movement of the human skull with high precision, accuracy and temporal resolution. All this has to be done while being integrated into an MRI machine where powerful static magnetic fields are present, kW of pulsed RF power and MVA of changing magnetic field gradients are present.

In this P&S we explore different motion sensing technologies suitable for deployment in an MRI machine. What you can expect is that we discuss the theory of multiple sensing technologies and then implement an optical, shortwave RF and NMR phase motion sensor. We will spend most of our time in the lab constructing such sensors and testing them on our robotic test bench. Finally, we would also experiment in our MRI facilities, where we would perform motion correction experiments.
227-0385-10LBiomedical Imaging6 KP5GS. Kozerke, K. P. Prüssmann
KurzbeschreibungIntroduction to diagnostic medical imaging based on electromagnetic and acoustic fields including X-ray planar and tomographic imaging, radio-tracer based nuclear imaging techniques, magnetic resonance imaging and ultrasound-based procedures.
LernzielUpon completion of the course students are able to:

• Explain the physical and mathematical foundations of diagnostic medical imaging systems
• Characterize system performance based on signal-to-noise ratio, contrast-to-noise ratio and transfer function
• Design a basic diagnostic imaging system chain including data acquisition and data reconstruction
• Identify advantages and limitations of different imaging methods in relation to medical diagnostic applications
Inhalt• Introduction (intro, overview, history)
• Signal theory and processing (foundations, transforms, filtering, signal-to-noise ratio)
• X-rays (production, tissue interaction, contrast, modular transfer function)
• X-rays (resolution, detection, digital subtraction angiography, Radon transform)
• X-rays (filtered back-projection, spiral computed tomography, image quality, dose)
• Nuclear imaging (radioactive tracer, collimation, point spread function, SPECT/PET)
• Nuclear imaging (detection principles, image reconstruction, kinetic modelling)
• Magnetic Resonance (magnetic moment, spin transitions, excitation, relaxation, detection)
• Magnetic Resonance (plane wave encoding, Fourier reconstruction, pulse sequences)
• Magnetic Resonance (contrast mechanisms, gradient- and spin-echo, applications)
• Ultrasound (mechanical wave generation, propagation in tissue, reflection, transmission)
• Ultrasound (spatial and temporal resolution, phased arrays)
• Ultrasound (Doppler shift, implementations, applications)
• Summary, example exam questions
SkriptLecture notes and handouts
LiteraturWebb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
Voraussetzungen / BesonderesAnalysis, Linear algebra, Physics, Basics of signal theory, Basic skills in Matlab/Python programming
Geförderte KompetenzenGeförderte Kompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindungnicht geprüft
Medien und digitale Technologiennicht geprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Persönliche KompetenzenAnpassung und Flexibilitätnicht geprüft
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethiknicht geprüft
Selbststeuerung und Selbstmanagement nicht geprüft
227-0970-00LResearch Topics in Biomedical Engineering
Findet dieses Semester nicht statt.
0 KP1KK. P. Prüssmann, S. Kozerke, M. Stampanoni, K. Stephan, J. Vörös
KurzbeschreibungCurrent topics in Biomedical Engineering presented by speakers from academia and industry.
LernzielGetting insight into actual areas and problems of Biomedical Engineering an Health Care.
227-0980-00LSeminar on Biomedical Magnetic Resonance Information 0 KP1SK. P. Prüssmann, S. Kozerke, M. Weiger Senften
KurzbeschreibungCurrent developments and problems of magnetic resonance imaging (MRI)
LernzielGetting insight into advanced topics in magnetic resonance imaging
402-0340-BSLMedizinische Physik Belegung eingeschränkt - Details anzeigen 8 KP15PA. J. Lomax, K. P. Prüssmann
KurzbeschreibungIm Rahmen der in den Vorlesungen besprochenen Themen können in Absprache mit den Dozenten selbständige Arbeiten durchgeführt werden.
Lernziel
402-0340-MSLMedizinische Physik Belegung eingeschränkt - Details anzeigen 8 KP15PA. J. Lomax, K. P. Prüssmann
KurzbeschreibungIm Rahmen der in den Vorlesungen besprochenen Themen können in Absprache mit den Dozenten selbständige Arbeiten durchgeführt werden.
Lernziel