Yves Barral: Catalogue data in Autumn Semester 2022

Name Prof. Dr. Yves Barral
Institut für Biochemie
ETH Zürich, HPM D 8.3
Otto-Stern-Weg 3
8093 Zürich
Telephone+41 44 632 06 78
Fax+41 44 632 15 91
RelationshipFull Professor

551-0309-00LConcepts in Modern Genetics
Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH.

Please mind the ETH enrolment deadlines for UZH students: Link
6 credits4VY. Barral, D. Bopp, A. Hajnal, O. Voinnet
AbstractConcepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.
ObjectiveThis course focuses on the concepts of classical and modern genetics and genomics.
ContentThe topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference.
Lecture notesScripts and additional material will be provided during the semester.
551-0337-00LCell Biology of the Nucleus Restricted registration - show details
Number of participants limited to 18.
The enrolment is done by the D-BIOL study administration.
6 credits7PR. Kroschewski, Y. Barral, M. Jagannathan, S. Jessberger, K. Weis
AbstractIntroduction to the organizational principles of the nucleus using budding yeast, drosophila and vertebrate cells as model systems.
ObjectiveThe aim of our course is to introduce the students to the organizational principles of the nucleus using budding yeast, drosophila and vertebrate cells as model systems. Emphasis is given to:
• Establishment of nuclear identity and nuclear-cytoplasmic communication
• Reorganization of the nucleus in aging
• Animal cells during the generation of cell diversity and neuronal differentiation

By the end of the course, based on lectures, literature reading and practical lab work, the students will be able to formulate open questions concerning the function of the nucleus. Thus, the students will know about the mechanisms and consequences of nuclear-cytoplasmic compartmentalization, nuclear positioning, DNA clustering in the nucleus and cytoplasm during cell divisions and aging.
ContentDuring this block-course, the students will
- learn how organelles establish and maintain identity with a focus on the nucleus
- discover the evolutionary and functional plasticity of the nucleus
- design, apply, evaluate and compare experimental strategies

Students - in groups of 2 or max. 3 - will be integrated into a research project connected to the subject of the course, within one of the participating research groups.

Lectures and technical notes will be given and informal discussions held to provide you with the theoretical background.
Lecture notesThere will be optional papers to be read before the course start. They serve as framework orientation for the practical parts of this block course and will be made accessible to you shortly before the course starts on the relevant Moodle site.
LiteratureDocumentation and recommended literature (review articles) will be provided during the course.
551-0357-00LCellular Matters: From Milestones to Open Questions
The number of participants is limited to 22 and will only take place with a minimum of 11 participants.
Please sign up until two weeks before the beginning of the semester (for Autumn 2022: by 05.09.2022 end of day) via e-mail to bml@ethz.ch using in the subject: 551-0357-00. In the email body indicate 1) your name, 2) your e-mail address, 3) master/PhD program. The students admitted to this seminar will be informed by e-mail in the week prior to the beginning of the semester.

The first lecture will serve to form groups of students and assign papers.
4 credits2SY. Barral, F. Allain, P. Arosio, E. Dufresne, D. Hilvert, M. Jagannathan, R. Mezzenga, T. Michaels, G. Neurohr, R. Riek, A. E. Smith, K. Weis, H. Wennemers
AbstractIn this course, the students will explore the quite new topic of biomolecular condensates.
Concepts and tools from biology, chemistry, biophysics and soft materials will be used, on one hand, to develop an understanding of the biological properties and functions of biomolecular condensates in health and disease, while, on the other, to inspire new materials.
ObjectiveIn terms of content, you, the student, after a general introduction to the topic, will learn about milestone works and current research questions in the young field of biomolecular condensates (properties, functions and applications) from an interdisciplinary point of view in a course which is a combination of literature (presentations given by pairs of students with different scientific backgrounds) and research seminars (presentations given by the lecturers all active experts in the field, with different backgrounds and expertise).
As to the skills, you will have the opportunity to learn how to critically read and evaluate scientific literature, how to give scientific presentations to an interdisciplinary audience (each presentation consisting of an introduction, critical description of the results and discussion of their significance) and substantiate your statements, acquire a critical mindset (pros/cons of chosen approaches/methods and limitations, quality of the data, solidity of the conclusions, possible follow-up experiments) that allows you to ask relevant questions and actively participate to the discussion.
With the final presentation you will have the unique opportunity to interact closely with the interdisciplinary group of lecturers (all internationally well-established experts) who will guide you in the choice of a subtopic and related literature.
ContentIn the last decade a new kind of compartments within the cell, the so-called biomolecular condensates, have been observed. This discovery is radically changing our understanding of the cell, its organization and dynamics. The emerging picture is that the cytoplasm and nucleoplasm are highly complex fluids that can (meta)stably segregate into membrane-less sub-compartments, similarly to emulsions.

The topic of biomolecular condensates goes beyond the boundaries of traditional disciplines and needs a multi-pronged approach that levers on, and cross-fertilizes, biology, physical chemistry, biophysics and soft materials to develop a proper understanding of the properties, functions in health and disease (Alzheimer’s, Parkinson’s, etc.), as well as possible applications of these biomolecular condensates.

Each week the lecture will consist of:
1) a short literature seminar: Pairs of students from different scientific backgrounds will be formed and assigned beforehand to present milestone literature to the class and facilitate the ensuing discussion. In the first class the pairs will be formed, the milestone papers made known to the whole class and assigned to the pairs.
2) a research seminar: the presentation of the milestone literature will serve as the introduction to the lecture by one of the lecturers of the course on their own state-of-the-art research in the field.
Lecture notesThe presentations will be made available after the lectures.
LiteratureThe milestone papers will be provided in advance.
For the final examination, the students will be helped by the lecturers in identifying a research topic and related literature.
Fostered competenciesFostered competencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingnot assessed
Media and Digital Technologiesnot assessed
Problem-solvingnot assessed
Project Managementnot assessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationnot assessed
Leadership and Responsibilityassessed
Self-presentation and Social Influence not assessed
Sensitivity to Diversitynot assessed
Negotiationnot assessed
Personal CompetenciesAdaptability and Flexibilitynot assessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsnot assessed
Self-awareness and Self-reflection not assessed
Self-direction and Self-management not assessed
551-0973-00LSpecialized Biology Course with an Educational Focus: Evolution Restricted registration - show details 6 credits2G + 13AH. Stocker, Y. Barral, K. Köhler
AbstractSpecialist aspects of biology with a focus on evolution are covered from the angle of imparting these to pupils, their historical development, and their significance for the subject, the individual and society.
ObjectiveAfter successful completion of the module, students should be able
- to retrieve in-depth knowledge of biology with a special focus on evolution and to impart this to others.
- to analyse controversial topics and to give factual explanations for these.
- to conduct more in-depth work on a research topic and to compile a tuition unit based on this topic
- to prepare tuition units involving complex learning matter at a high specialist level which are suitably tailored to the recipients, and to teach these in a manner conducive to learning.
ContentSelected biological topics, with a special focus on evolution, are dealt with under consideration of the special needs of persons involved in teaching.
The module comprises lectures, a book club, and a seminar thesis.
Lecture notesTeaching materials are available online on Moodle.
LiteratureLiterature and references are posted online on Moodle.
Prerequisites / NoticeThe Specialized Biology Course with an Educational Focus consists of two modules (6 CP each). In the fall semester, the focus is on evolution. The module of the spring semester deals with biological concepts. Students attending both modules can start with either module.

Performance is assessed during the course of the entire module. Active participation in the course is required. The thesis (including oral presentation) has to be completed.

The Specialized Biology Course with an Educational Focus (6+6 CP) can be acknowledged, in agreement with the advisor of the respective elective major, as one of the two obligatory research projects (each 15 CP). In such a case, additional 3 CP must be obtained in another course.

In case of overbooking of the course, students enrolled in the Teaching Diploma in Biology will have priority.