Gianni Blatter: Catalogue data in Autumn Semester 2018 |
Name | Prof. em. Dr. Gianni Blatter |
Field | Theoretical physics |
Address | Institut für Theoretische Physik ETH Zürich, HIT K 43.3 Wolfgang-Pauli-Str. 27 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 25 68 |
johann.blatter@itp.phys.ethz.ch | |
Department | Physics |
Relationship | Professor emeritus |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
402-0101-00L | The Zurich Physics Colloquium ![]() | 0 credits | 1K | R. Renner, G. Aeppli, C. Anastasiou, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg | |
Abstract | Research colloquium | ||||
Objective | |||||
402-0501-00L | Solid State Physics | 0 credits | 1S | A. Zheludev, G. Blatter, C. Degen, K. Ensslin, D. Pescia, M. Sigrist, A. Wallraff | |
Abstract | Research colloquium | ||||
Objective | |||||
402-0800-00L | The Zurich Theoretical Physics Colloquium ![]() | 0 credits | 1K | O. Zilberberg, C. Anastasiou, G. Blatter, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, S. Huber, P. Jetzer, L. M. Mayer, B. Moore, R. Renner, T. C. Schulthess, M. Sigrist, University lecturers | |
Abstract | Research colloquium | ||||
Objective | The Zurich Theoretical Physics Colloquium is jointly organized by the University of Zurich and ETH Zurich. Its mission is to bring both students and faculty with diverse interests in theoretical physics together. Leading experts explain the basic questions in their field of research and communicate the fascination for their work. | ||||
402-0861-00L | Statistical Physics | 10 credits | 4V + 2U | G. Blatter | |
Abstract | The lecture focuses on classical and quantum statistical physics. Various techniques, cumulant expansion, path integrals, and specific systems are discussed: Fermions, photons/phonons, Bosons, magnetism, van der Waals gas. Phase transitions are studied in mean field theory (Weiss, Landau). Including fluctuations leads to critical phenomena, scaling, and the renormalization group. | ||||
Objective | This lecture gives an introduction into the the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education. | ||||
Content | Thermodynamics, three laws of thermodynamics, thermodynamic potentials, phenomenology of phase transitions. Classical statistical physics: micro-canonical-, canonical-, and grandcanonical ensembles, applications to simple systems. Quantum statistical physics: single particle, ideal quantum gases, fermions and bosons, statistical interaction. Techniques: variational approach, cumulant expansion, path integral formulation. Degenerate fermions: Fermi gas, electrons in magnetic field. Bosons: photons and phonons, Bose-Einstein condensation. Magnetism: Ising-, XY-, Heisenberg models, Weiss mean-field theory. Van der Waals gas-liquid transition. Landau theory of phase transitions, first- and second order, tricritical. Fluctuations: field theory approach, Gauss theory, self-consistent field, Ginzburg criterion. Critical phenomena: scaling theory, universality. Renormalization group: general theory and applications to spin models (real space RG), phi^4 theory (k-space RG), Kosterlitz-Thouless theory. | ||||
Lecture notes | Lecture notes available in English. | ||||
Literature | No specific book is used for the course. Relevant literature will be given in the course. |